[1] COSTANZA R, DARGE R, DEGROOT R, et al. The value of the world's ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253 − 260. doi: 10.1038/387253a0
[2] Millennium Ecosystem Assessment. Ecosystems and human well-being[M]. Washington, DC: Island Press, 2005.
[3] HE J, YAN Z, WAN Y. Trade-offs in ecosystem services based on a comprehensive regionalization method: a case study from an urbanization area in China[J]. Environmental Earth Sciences, 2018, 77(5): 179. doi: 10.1007/s12665-018-7280-2
[4] 李双成. 生态系统服务研究思辨[J]. 景观设计学, 2019, 7(1): 82 − 87.
[5] HAAREN C, ALBERT C, BARKMANN J, et al. From explanation to application: introducing a practice-oriented ecosystem services evaluation (PRESET) model adapted to the context of landscape planning and management[J]. Landscape Ecology, 2014, 29(8): 1335 − 1346. doi: 10.1007/s10980-014-0084-1
[6] COSTANZA R, DEGROOT R, BRAAT L, et al. Twenty years of ecosystem services: How far have we come and how far do we still need to go?[J]. Ecosystem Services, 2017, 28: 1 − 16. doi: 10.1016/j.ecoser.2017.09.008
[7] FELIPE-LUCIA M R, MARTINLOPEZ B, LAVOREL S, et al. Ecosystem services flows: Why stakeholders’ power relationships matter[J]. PLOS ONE, 2015, 10(7): e0132232. doi: 10.1371/journal.pone.0132232
[8] ZODERER B M, TASSER E, CARVER S, et al. Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles[J]. Ecosystem Services, 2019, 37: 100938. doi: 10.1016/j.ecoser.2019.100938
[9] VILLA F, VOIGT B, ERICKSON J D. New perspectives in ecosystem services science as instruments to understand environmental securities[J]. Philosophical Transactions of the Royal Society of London, 2014, 369(1639): 20120286. doi: 10.1098/rstb.2012.0286
[10] FISHER B, TURNER R K, MORLING P. Defining and classifying ecosystem services for decision making[J]. Ecological Economics, 2009, 68(3): 643 − 653. doi: 10.1016/j.ecolecon.2008.09.014
[11] 郑华, 李屹峰, 欧阳志云, 等. 生态系统服务功能管理研究进展[J]. 生态学报, 2013, 33(3): 702 − 710.
[12] 陈强, 陈云浩, 王萌杰, 等. 2001—2010年洞庭湖生态系统质量遥感综合评价与变化分析[J]. 生态学报, 2015, 35(13): 4347 − 4356.
[13] 孙滨峰. 东北森林带生态系统格局、质量、服务功能和胁迫十年变化研究(2000-2010)[D]. 北京: 中国科学院生态环境研究中心, 2015.
[14] SINARE H, GORDON L J. Ecosystem services from woody vegetation on agricultural lands in Sudano-Sahelian West Africa[J]. Agriculture, Ecosystems & Environment, 2015, 200: 186 − 199.
[15] 张琨, 吕一河, 傅伯杰. 生态恢复中生态系统服务的演变: 趋势、过程与评估[J]. 生态学报, 2016, 36(20): 6337 − 6344.
[16] LAVOREL S, GRIGULIS K, LAMARQUE P, et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services[J]. Journal of Ecology, 2011, 99(1): 135 − 147. doi: 10.1111/j.1365-2745.2010.01753.x
[17] DELGADO-AGUILAR M J, HINOJOSA L, SCHMITT C B. Combining remote sensing techniques and participatory mapping to understand the relations between forest degradation and ecosystems services in a tropical rainforest[J]. Applied Geography, 2019, 104: 65 − 47. doi: 10.1016/j.apgeog.2019.02.003
[18] BENAYAS J M R, NEWTON A C, DIAZ A, et al. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis[J]. Science, 2009, 325(5944): 1121 − 1124. doi: 10.1126/science.1172460
[19] 丁肇慰, 肖能文, 高晓奇, 等. 长江流域2000—2015年生态系统质量及服务变化特征[J]. 环境科学研究, 2020, 33(5): 1308 − 1314. doi: 10.13198/j.issn.1001-6929.2020.03.24
[20] 卢慧婷, 黄琼中, 朱捷缘, 等. 拉萨河流域生态系统类型和质量变化及其对生态系统服务的影响[J]. 生态学报, 2018, 38(24): 8911 − 8918.
[21] LI P, SHENG M Y, YANG D W, et al. Evaluating flood regulation ecosystem services under climate, vegetation and reservoir influences[J]. Ecological Indicators, 2019, 107: 105642. doi: 10.1016/j.ecolind.2019.105642
[22] 刘绿怡, 卞子亓, 丁圣彦. 景观空间异质性对生态系统服务形成与供给的影响[J]. 生态学报, 2018, 38(18): 6412 − 6421.
[23] 赵文武, 刘月, 冯强, 等. 人地系统耦合框架下的生态系统服务[J]. 地理科学进展, 2018, 37(1): 139 − 151.
[24] GRIMM N B, GROFFMAN P, STAUDINGER M, et al. Climate change impacts on ecosystems and ecosystem services in the United States: process and prospects for sustained assessment[J]. Climatic Change, 2016, 135(1): 97 − 105. doi: 10.1007/s10584-015-1547-3
[25] RUNTING R K, LOVELOCK C E, BEYER H L, et al. Costs and opportunities for preserving coastal wetlands under sea level rise[J]. Conservation Letters, 2017, 10(1): 49 − 57. doi: 10.1111/conl.12239
[26] BAGSTAD K J, SEMMENS D J, WAAGE S, et al. A comparative assessment of decision-support tools for ecosystem services quantification and valuation[J]. Ecosystem Services, 2013, 5: 27 − 39. doi: 10.1016/j.ecoser.2013.07.004
[27] AHMED M A A, ABD-ELRAHMAN A, ESCOBEDO F J, et al. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States[J]. Journal of Environmental Management, 2017, 199: 158 − 171.
[28] 饶恩明, 肖燚. 四川省生态系统土壤保持功能空间特征及其影响因素[J]. 生态学报, 2018, 38(24): 8741 − 8749.
[29] ANDERSSON E, MCPHEARSON T, KREMER P, et al. Scale and context dependence of ecosystem service providing units[J]. Ecosystem Services, 2015, 12: 157 − 164. doi: 10.1016/j.ecoser.2014.08.001
[30] QIU J X, TURNER M G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed[J]. Ecosphere, 2015, 6(11): 1 − 19.
[31] 杨冕, 张艺千, 王春晓. 湖北省关键生态系统服务供需状况的时空变化研究[J]. 长江流域资源与环境, 2019, 28(9): 2080 − 2091.
[32] RICKETTS T H. Tropical forest fragments enhance pollinator activity in nearby coffee crops[J]. Conservation Biology, 2004, 18(5): 1262 − 1271. doi: 10.1111/j.1523-1739.2004.00227.x
[33] MACE G M, NORRIS K, FITTER A H. Biodiversity and ecosystem services: a multilayered relationship[J]. Trends in Ecology & Evolution, 2012, 27(1): 19 − 26.
[34] VAUGHN C C. Ecosystem services provided by freshwater mussels[J]. Hydrobiologia, 2018, 810(1): 15 − 27. doi: 10.1007/s10750-017-3139-x
[35] COSTA A, SILVA B, GERARDO J, et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae[J]. Agriculture, Ecosystems & Environment, 2020, 287: 106708.
[36] TEIXEIRA D G, MARQUES S P, GARABINI C T, et al. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services[J]. Landscape Ecology, 2018, 33: 1247 − 1257. doi: 10.1007/s10980-018-0673-5
[37] DIEKTTER T, WAMSER S, WOLTERS V, et al. Landscape and management effects on structure and function of soil arthropod communities in winter wheat[J]. Agriculture, Ecosystems & Environment, 2010, 137(1-2): 108 − 112.
[38] FAHRIG L, GIRARD J, DURO D, et al. Farmlands with smaller crop fields have higher within-field biodiversity[J]. Agriculture, Ecosystems & Environment, 2015, 200: 219 − 234.
[39] MAAS B, CLOUGH Y, TSCHARNTKE T. Bats and birds increase crop yield in tropical agroforestry landscapes[J]. Ecology Letters, 2013, 16(12): 1480 − 1487. doi: 10.1111/ele.12194
[40] MAAS B, TSCHARNTKE T, SALEH S, et al. Avian species identity drives predation success in tropical cacao agroforestry[J]. Journal of Applied Ecology, 2015, 52(3): 735 − 743. doi: 10.1111/1365-2664.12409
[41] RUSCH A, CHAPLIN-KRAMER R, GARDINER M M, et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis[J]. Agriculture, Ecosystems & Environment, 2016, 221: 198 − 204.
[42] HAHN M B, GANGNON R E, CHRISTOVAM B, et al. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon[J]. PLOS ONE, 2014, 9(1): e85725. doi: 10.1371/journal.pone.0085725
[43] PRIST P R, URIARTE M, TAMBOSI L R, et al. Landscape, environmental and social predictors of Hantavirus risk in São Paulo, Brazil[J]. PLOS ONE, 2016, 11(10): e0163459. doi: 10.1371/journal.pone.0163459
[44] WETERINGS R, UMPONSTIRA C, BUCKLEY H L. Landscape variation influences trophic cascades in dengue vector food webs[J]. Science Advances, 2018, 4(2): eaap9534. doi: 10.1126/sciadv.aap9534
[45] BARBIER E B, KOCH E W, SILLIMAN B R, et al. Coastal ecosystem-based management with nonlinear ecological functions and values[J]. Science, 2008, 319: 321 − 323. doi: 10.1126/science.1150349
[46] RODRÍGUEZ J, BEARD JR T D, BENNETT E, et al. Trade-offs across space, time, and ecosystem services[J]. Ecology and Society, 2006, 11(1): 709 − 723.
[47] 李双成, 张才玉, 刘金龙, 等. 生态系统服务权衡与协同研究进展及地理学研究议题[J]. 地理研究, 2013, 32(8): 1379 − 1390.
[48] DARYANTO S, FU B, ZHAO W. Evaluating the use of fire to control shrub encroachment in global drylands: A synthesis based on ecosystem service perspective[J]. Science of the Total Environment, 2018, 648: 285 − 292.
[49] PAN Y, WU J X, XU Z R. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem[J]. Ecological Complexity, 2014, 17: 79 − 86. doi: 10.1016/j.ecocom.2013.11.001
[50] GENELETTI D, SCOLOZZI R, ADEM ESMAIL B. Assessing ecosystem services and biodiversity tradeoffs across agricultural landscapes in a mountain region[J]. International Journal of Biodiversity Science, Ecosystem Services & Management, 2018, 14(1): 189 − 209.
[51] SCHIRPKE U, CANDIAGO S, VIGL L E, et al. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services[J]. Science of the Total Environment, 2019, 651: 928 − 941. doi: 10.1016/j.scitotenv.2018.09.235
[52] LESTER S E, COSTELLO C, HALPERN B S, et al. Evaluating tradeoffs among ecosystem services to inform marine spatial planning[J]. Marine Policy, 2013, 38: 80 − 89. doi: 10.1016/j.marpol.2012.05.022
[53] MOUCHET M A, LAMARQUE P, MARTÍN-LÓPEZ B, et al. An interdisciplinary methodological guide for quantifying associations between ecosystem services[J]. Global Environmental Change, 2014, 28: 298 − 308. doi: 10.1016/j.gloenvcha.2014.07.012
[54] DADE M C, MITCHELL M G E, MCALPINE C A, et al. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach[J]. Ambio, 2019, 48(10): 1116 − 1128. doi: 10.1007/s13280-018-1127-7
[55] LI Z H, DENG X Z, JIN G, et al. Tradeoffs between agricultural production and ecosystem services: A case study in Zhangye, Northwest China[J]. Science of the Total Environment, 2020, 707: 136032. doi: 10.1016/j.scitotenv.2019.136032
[56] LI B J, CHEN D X, WU S H, et al. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China[J]. Ecological Indicators, 2016, 71: 416 − 427. doi: 10.1016/j.ecolind.2016.07.017
[57] 郝梦雅, 任志远, 孙艺杰, 等. 关中盆地生态系统服务的权衡与协同关系动态分析[J]. 地理研究, 2017, 36(3): 592 − 602.
[58] ZHENG H, WANG L J, WU T. Coordinating ecosystem service trade-offs to achieve win–win outcomes: A review of the approaches[J]. Journal of Environmental Sciences, 2019, 82(8): 103 − 112.
[59] 张宏锋, 欧阳志云, 郑华. 生态系统服务功能的空间尺度特征[J]. 生态学杂志, 2007(9): 1432 − 1437. doi: 10.13292/j.1000-4890.2007.0247
[60] SCHOLES R, REYERS B, BIGGS R, et al. Multi-scale and cross-scale assessments of social–ecological systems and their ecosystem services[J]. Current Opinion in Environmental Sustainability, 2013, 5(1): 16 − 25. doi: 10.1016/j.cosust.2013.01.004
[61] HU Y N, PENG J, LIU Y X, et al. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China[J]. Science of the Total Environment, 2018, 625: 849 − 860. doi: 10.1016/j.scitotenv.2017.12.340
[62] LÓPEZ-HOFFMAN L, VARADY R G, BALVANERA F P, et al. Ecosystem services across borders: a framework for transboundary conservation policy[J]. Frontiers in Ecology & the Environment, 2010, 8(2): 84 − 91.
[63] SHAN Y M, CHEN D M, GUAN X X, et al. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland[J]. Soil Biology and Biochemistry, 2011, 43(9): 1943 − 1954. doi: 10.1016/j.soilbio.2011.06.002
[64] CHEN C, PARK T, WANG X, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2(2): 122 − 129. doi: 10.1038/s41893-019-0220-7
[65] MACIAS-FAURIA M. Satellite images show China going green[J]. Nature, 2018, 553(7689): 411 − 413. doi: 10.1038/d41586-018-00996-5
[66] 刘鸿雁. 中国大规模造林变绿难以越过胡焕庸线[J]. 中国科学:地球科学, 2019, 49(11): 1831 − 1832.
[67] 徐德琳, 邹长新, 徐梦佳, 等. 基于生态保护红线的生态安全格局构建[J]. 生物多样性, 2015, 23(6): 740 − 746. doi: 10.17520/biods.2015132
[68] FEDRIGO J K, ATAIDE P F, AZAMBUJA FILHO J, et al. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland[J]. Restoration Ecology, 2018, 26(4): 677 − 685. doi: 10.1111/rec.12635
[69] 余辉. 日本琵琶湖流域生态系统的修复与重建[J]. 环境科学研究, 2016, 29(1): 36 − 43. doi: 10.13198/j.issn.1001-6929.2016.01.05
[70] 吴舒尧, 黄姣, 李双成. 不同生态恢复方式下生态系统服务与生物多样性恢复效果的整合分析[J]. 生态学报, 2017, 37(20): 6986 − 6999.
[71] TURNER W R, KATRINA B, BROOKS T M, et al. Global conservation of biodiversity and ecosystem services[J]. Bioscience, 2007, 57(10): 868 − 873. doi: 10.1641/B571009
[72] NAIDOO R, BALMFORD A, COSTANZA R, et al. Global mapping of ecosystem services and conservation priorities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9495 − 9500. doi: 10.1073/pnas.0707823105
[73] 张立伟, 傅伯杰. 生态系统服务制图研究进展[J]. 生态学报, 2014, 34(2): 316 − 325.
[74] JOHNSON C N, BALMFORD A, BROOK B W, et al. Biodiversity losses and conservation responses in the Anthropocene[J]. Science, 2017, 356(6335): 270 − 275. doi: 10.1126/science.aam9317
[75] 环境保护部, 中国科学院. 全国生态功能区划[N]. 中国环境报, 2015-12-01(006).
[76] GEERTSEMA W, ROSSING W A, LANDIS D A, et al. Actionable knowledge for ecological intensification of agriculture[J]. Frontiers in Ecology & the Environment, 2016, 14(4): 209 − 216.
[77] ISBELL F, GONZALEZ A, LOREAU M, et al. Linking the influence and dependence of people on biodiversity across scales[J]. Nature, 2017, 546(7656): 65 − 72. doi: 10.1038/nature22899
[78] FAHRIG L, BAUDRY J, BROTONS L, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[J]. Ecology Letters, 2011, 14(2): 101 − 112. doi: 10.1111/j.1461-0248.2010.01559.x
[79] DAINESE M, LUNA D I, SITZIA T, et al. Testing scale-dependent effects of seminatural habitats on farmland biodiversity[J]. Ecological Applications, 2015, 25(6): 1681 − 1690. doi: 10.1890/14-1321.1
[80] BIRKHOFER K, DIEHL E, ANDERSSON J, et al. Ecosystem services—current challenges and opportunities for ecological research[J]. Frontiers in Ecology & Evolution, 2015, 2(87): 1 − 12.
[81] MITCHELL M G E, BENNETT E M, GONZALEZ A. Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services[J]. Agriculture, Ecosystems & Environment, 2014, 192: 144 − 151.
[82] HOWE C, SUICH H, VIRA B, et al. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world[J]. Global Environmental Change, 2014, 28: 263 − 275. doi: 10.1016/j.gloenvcha.2014.07.005
[83] SOMARRIBA E, CERDA R, OROZCO L, et al. Carbon stocks and cocoa yields in agroforestry systems of Central America[J]. Agriculture, Ecosystems & Environment, 2013, 173: 46 − 57.
[84] ZHENG H, WANG L J, PENG W J, et al. Realizing the values of natural capital for inclusive, sustainable development: Informing China's new ecological development strategy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8623 − 8628. doi: 10.1073/pnas.1819501116
[85] EYVINDSON K, REPO A, MöNKKöNEN M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy[J]. Forest Policy and Economics, 2018, 92: 119 − 127. doi: 10.1016/j.forpol.2018.04.009
[86] WONG C P, JIANG B, BOHN T J, et al. Lake and wetland ecosystem services measuring water storage and local climate regulation[J]. Water Resources Research, 2017, 53(4): 3197 − 3223. doi: 10.1002/2016WR019445
[87] KENNEDY C M, HAWTHORNE P L, MITEVA D A, et al. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services[J]. Biological Conservation, 2016, 204: 221 − 230. doi: 10.1016/j.biocon.2016.10.039
[88] SABATIER R, DOYEN L, TICHIT M. Heterogeneity and the trade-off between ecological and productive functions of agro-landscapes: a model of cattle-bird interactions in a grassland agroecosystem[J]. Agricultural Systems, 2014, 126: 38 − 49. doi: 10.1016/j.agsy.2013.02.008
[89] JOHNSON J A, RUNGE C F, SENAUER B, et al. Global agriculture and carbon trade-offs[J]. Proceedings of the National Academy of Sciences, 2014, 111(34): 12342 − 12347. doi: 10.1073/pnas.1412835111
[90] LU Z X, WEI Y P, XIAO H L, et al. Trade-offs between midstream agricultural production and downstream ecological sustainability in the Heihe River basin in the past half century[J]. Agricultural Water Management, 2015, 152: 233 − 242. doi: 10.1016/j.agwat.2015.01.022
[91] BROWNSON K, GUINESSEY E, CARRANZA M, et al. Community-Based Payments for Ecosystem Services (CB-PES): Implications of community involvement for program outcomes[J]. Ecosystem Services, 2019, 39: 100974. doi: 10.1016/j.ecoser.2019.100974
[92] CALLE A. Can short-term payments for ecosystem services deliver long-term tree cover change?[J]. Ecosystem Services, 2020, 42: 101084. doi: 10.1016/j.ecoser.2020.101084
[93] ZHENG H, ROBINSON B E, LIANG Y C, et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16681 − 16686. doi: 10.1073/pnas.1312324110
[94] CHAIGNEAU T, BROWN K, COULTHARD S, et al. Money, use and experience: Identifying the mechanisms through which ecosystem services contribute to wellbeing in coastal Kenya and Mozambique[J]. Ecosystem Services, 2019, 38: 100957. doi: 10.1016/j.ecoser.2019.100957
[95] RAUM S. A framework for integrating systematic stakeholder analysis in ecosystem services research: Stakeholder mapping for forest ecosystem services in the UK[J]. Ecosystem Services, 2018, 29: 170 − 184. doi: 10.1016/j.ecoser.2018.01.001