[1] NISBET I C T, LAGOY P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992, 16(3): 290-300. doi: 10.1016/0273-2300(92)90009-X
[2] ZHANG Y, PENG C, GUO Z H, et al. Polycyclic aromatic hydrocarbons in urban soils of China: Distribution, influencing factors, health risk and regression prediction [J]. Environmental Pollution, 2019, 254: 112930. doi: 10.1016/j.envpol.2019.07.098
[3] YU H Y, LI T J, LIU Y, et al. Spatial distribution of polycyclic aromatic hydrocarbon contamination in urban soil of China [J]. Chemosphere, 2019, 230: 498-509. doi: 10.1016/j.chemosphere.2019.05.006
[4] HAN J, LIANG Y S, ZHAO B, et al. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis [J]. Environmental Pollution, 2019, 251: 312-327. doi: 10.1016/j.envpol.2019.05.022
[5] WAQAS M, KHAN S, CHAO C, et al. Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan [J]. Science of the Total Environment, 2014, 497/498: 448-458. doi: 10.1016/j.scitotenv.2014.07.128
[6] DREIJ K, LUNDIN L, LE BIHANIC F, et al. Polycyclic aromatic compounds in urban soils of Stockholm City: Occurrence, sources and human health risk assessment [J]. Environmental Research, 2020, 182: 108989. doi: 10.1016/j.envres.2019.108989
[7] 曹云者, 柳晓娟, 谢云峰, 等. 我国主要地区表层土壤中多环芳烃组成及含量特征分析 [J]. 环境科学学报, 2012, 32(1): 197-203. CAO Y Z, LIU X J, XIE Y F, et al. Patterns of PAHs concentrations and components in surface soils of main areas in China [J]. Acta Scientiae Circumstantiae, 2012, 32(1): 197-203(in Chinese).
[8] 黄亮, 张经, 吴莹. 长江流域表层沉积物中多环芳烃分布特征及来源解析 [J]. 生态毒理学报, 2016, 11(2): 566-572. HUANG L, ZHANG J, WU Y. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 566-572(in Chinese).
[9] LV M, LUAN X L, LIAO C Y, et al. Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones [J]. Nature Sustainability, 2020, 3(10): 878-884. doi: 10.1038/s41893-020-0565-y
[10] 范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价 [J]. 环境科学, 2019, 40(5): 2101-2114. FAN B, WANG X N, HUANG Y, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in seven basins of China [J]. Environmental Science, 2019, 40(5): 2101-2114(in Chinese).
[11] SULONG N A, LATIF M T, SAHANI M, et al. Distribution, sources and potential health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected during different monsoon seasons and haze episode in Kuala Lumpur [J]. Chemosphere, 2019, 219: 1-14. doi: 10.1016/j.chemosphere.2018.11.195
[12] 张莉, 张原, 祁士华, 等. 武汉市洪山区春季PM2.5浓度及多环芳烃组成特征 [J]. 中国环境科学, 2015, 35(8): 2319-2325. doi: 10.3969/j.issn.1000-6923.2015.08.009 ZHANG L, ZHANG Y, QI S H, et al. Characteristics of atmospheric PM2.5 and the variation of PAHs in PM2.5 during spring in Hongshan district, Wuhan [J]. China Environmental Science, 2015, 35(8): 2319-2325(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.08.009
[13] WANG C H, WU S H, ZHOU S L, et al. Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: A review [J]. Pedosphere, 2017, 27(1): 17-26. doi: 10.1016/S1002-0160(17)60293-5
[14] WILCKE W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil [J]. Geoderma, 2007, 141(3/4): 157-166.
[15] WILD S R, JONES K C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget [J]. Environmental Pollution, 1995, 88(1): 91-108. doi: 10.1016/0269-7491(95)91052-M
[16] HARRISON R M, SMITH D J T, LUHANA L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U. K [J]. Environmental Science & Technology, 1996, 30(3): 825-832.
[17] BOZLAKER A, MUEZZINOGLU A, ODABASI M. Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey [J]. Journal of Hazardous Materials, 2008, 153(3): 1093-1102. doi: 10.1016/j.jhazmat.2007.09.064
[18] 张俊叶, 俞菲, 俞元春. 中国主要地区表层土壤多环芳烃含量及来源解析 [J]. 生态环境学报, 2017, 26(6): 1059-1067. ZHANG J Y, YU F, YU Y C. Content and source apportionment of polycyclic aromatic hydrocarbons in surface soil in major areas of China [J]. Ecology and Environmental Sciences, 2017, 26(6): 1059-1067(in Chinese).
[19] LIU S D, XIA X H, YANG L Y, et al. Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: Distribution, sources and their correlation with the city's urbanization history [J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 1085-1092.
[20] PENG C, WANG M E, ZHAO Y, et al. Distribution and risks of polycyclic aromatic hydrocarbons in suburban and rural soils of Beijing with various land uses [J]. Environmental Monitoring and Assessment, 2016, 188(3): 162. doi: 10.1007/s10661-016-5156-z
[21] CAO H B, CHAO S H, QIAO L, et al. Urbanization-related changes in soil PAHs and potential health risks of emission sources in a township in Southern Jiangsu, China [J]. Science of the Total Environment, 2017, 575: 692-700. doi: 10.1016/j.scitotenv.2016.09.106
[22] WANG C H, ZHOU S L, SONG J, et al. Human health risks of polycyclic aromatic hydrocarbons in the urban soils of Nanjing, China [J]. Science of the Total Environment, 2018, 612: 750-757. doi: 10.1016/j.scitotenv.2017.08.269
[23] JENSEN H, REIMANN C, FINNE T E, et al. PAH-concentrations and compositions in the top 2 cm of forest soils along a 120 km long transect through agricultural areas, forests and the city of Oslo, Norway [J]. Environmental Pollution, 2007, 145(3): 829-838. doi: 10.1016/j.envpol.2006.05.008
[24] NI H G, QIN P H, CAO S P, et al. Fate estimation of polycyclic aromatic hydrocarbons in soils in a rapid urbanization region, Shenzhen of China [J]. Journal of Environmental Monitoring, 2011, 13(2): 313-318. doi: 10.1039/C0EM00470G
[25] CHANG J, ZHANG E L, LIU E F, et al. A 60-year historical record of polycyclic aromatic hydrocarbons (PAHs) pollution in lake sediment from Guangxi Province, Southern China [J]. Anthropocene, 2018, 24: 51-60. doi: 10.1016/j.ancene.2018.11.003
[26] 韩玲, 高照琴, 白军红, 等. 城市化背景下珠江三角洲典型湿地土壤多环芳烃(PAHs)的含量、来源与污染风险评价 [J]. 农业环境科学学报, 2019, 38(3): 609-617. doi: 10.11654/jaes.2018-1535 HAN L, GAO Z Q, BAI J H, et al. PAHs in surface wetland soils of the Pearl River Delta affected by urbanization: Levels, sources, and toxic risks [J]. Journal of Agro-Environment Science, 2019, 38(3): 609-617(in Chinese). doi: 10.11654/jaes.2018-1535
[27] 吴怡, 高源, 张鑫. 2006—2015年天津城市化进程与土地利用变化的关系分析 [J]. 环境科学导刊, 2018, 37(5): 1-6. doi: 10.13623/j.cnki.hkdk.2018.05.002 WU Y, GAO Y, ZHANG X. Analysis of the relationship between urbanization process and land utilization in Tianjin from 2006 to 2015 [J]. Environmental Science Survey, 2018, 37(5): 1-6(in Chinese). doi: 10.13623/j.cnki.hkdk.2018.05.002
[28] 天津市统计局. 天津统计年鉴[M]. 天津; 中国统计出版社. 2009, 2013, 2014, 2015. Tianjin Municipal Bureau of Statistics. Tianjin statistical yearbook[M]. Tianjin; China Statistics Press. 2009, 2013, 2014, 2015(in Chinese).
[29] LV J G, SHI R G, CAI Y M, et al. Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China [J]. Bulletin of Environmental Contamination and Toxicology, 2010, 85(1): 5-9. doi: 10.1007/s00128-010-9993-0
[30] SHAO X L, XU Y P, ZHANG W, et al. Polycyclic aromatic hydrocarbons (PAHs) pollution in agricultural soil in Tianjin, China [J]. Soil and Sediment Contamination:an International Journal, 2015, 24(3): 343-351. doi: 10.1080/15320383.2015.958212
[31] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203
[32] 孙海峰, 张勇, 解静芳. 正定矩阵因子分解模型在环境中多环芳烃源解析方面的应用 [J]. 生态毒理学报, 2015, 10(4): 25-33. SUN H F, ZHANG Y, XIE J F. Applications of positive matrix factorization(PMF) for source apportionment of PAHs in the environment [J]. Asian Journal of Ecotoxicology, 2015, 10(4): 25-33(in Chinese).
[33] REFF A, EBERLY S I, BHAVE P V. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods [J]. Journal of the Air & Waste Management Association, 2007, 57(2): 146-154.
[34] 蓝家程, 孙玉川, 胡宁, 等. 岩溶槽谷区土壤多环芳烃健康风险评价 [J]. 环境化学, 2019, 38(9): 1973-1981. doi: 10.7524/j.issn.0254-6108.2019030601 LAN J C, SUN Y C, HU N, et al. Health risk assessment of polycyclic aromatic hydrocarbons in soils of Karst trough valley in Chongqing [J]. Environmental Chemistry, 2019, 38(9): 1973-1981(in Chinese). doi: 10.7524/j.issn.0254-6108.2019030601
[35] 黄应平, 金蕾, 朱灿, 等. 三峡库区香溪河库湾土壤多环芳烃时空分布特征及风险评价 [J]. 环境科学, 2021, 42(8): 3808-3819. doi: 10.13227/j.hjkx.202012149 HUANG Y P, JIN L, ZHU C, et al. Temporal-spatial distribution and risk assessment of polycyclic aromatic hydrocarbons in soil of Xiangxi Bay in Three Gorges reservoir area [J]. Environmental Science, 2021, 42(8): 3808-3819(in Chinese). doi: 10.13227/j.hjkx.202012149
[36] JIA J P, BI C J, GUO X, et al. Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China [J]. Environmental Science and Pollution Research, 2017, 24(1): 605-615. doi: 10.1007/s11356-016-7818-3
[37] Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual[M]//USEPA. Washington DC. 1991.
[38] KNAFLA A, PHILLIPPS K A, BRECHER R W, et al. Development of a dermal cancer slope factor for benzo[a]Pyrene [J]. Regulatory Toxicology and Pharmacology, 2006, 45(2): 159-168. doi: 10.1016/j.yrtph.2006.02.008
[39] CHEN Y N, ZHANG J Q, ZHANG F, et al. Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin, China [J]. Ecotoxicology and Environmental Safety, 2018, 156: 383-390. doi: 10.1016/j.ecoenv.2018.03.020
[40] HARITASH A K, KAUSHIK C P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review [J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 1-15.
[41] CHOI S D. Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire [J]. Science of the Total Environment, 2014, 470/471: 1441-1449. doi: 10.1016/j.scitotenv.2013.07.100
[42] SUN G D, JIN J H, XU Y, et al. Isolation of a high molecular weight polycyclic aromatic hydrocarbon-degrading strain and its enhancing the removal of HMW-PAHs from heavily contaminated soil [J]. International Biodeterioration & Biodegradation, 2014, 90: 23-28.
[43] PENG C, OUYANG Z Y, WANG M E, et al. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators [J]. Environmental Pollution, 2013, 178: 426-432. doi: 10.1016/j.envpol.2013.03.058
[44] KHALILI N R, SCHEFF P A, HOLSEN T M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions [J]. Atmospheric Environment, 1995, 29(4): 533-542. doi: 10.1016/1352-2310(94)00275-P
[45] JENKINS B M, JONES A D, TURN S Q, et al. Emission factors for polycyclic aromatic hydrocarbons from biomass burning [J]. Environmental Science & Technology, 1996, 30(8): 2462-2469.
[46] CHEN M, HUANG P, CHEN L. Polycyclic aromatic hydrocarbons in soils from Urumqi, China: Distribution, source contributions, and potential health risks [J]. Environmental Monitoring and Assessment, 2013, 185(7): 5639-5651. doi: 10.1007/s10661-012-2973-6
[47] DAHLE S, SAVINOV V M, MATISHOV G G, et al. Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay [J]. Science of the Total Environment, 2003, 306(1/2/3): 57-71.
[48] SAHA M H, TOGO A, MIZUKAWA K, et al. Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance [J]. Marine Pollution Bulletin, 2009, 58(2): 189-200. doi: 10.1016/j.marpolbul.2008.04.049
[49] HU N J, HUANG P, LIU J H, et al. Source apportionment of polycyclic aromatic hydrocarbons in surface sediments of the Bohai Sea, China [J]. Environmental Science and Pollution Research International, 2013, 20(2): 1031-1040. doi: 10.1007/s11356-012-1098-3
[50] OLAJIRE A A, ALTENBURGER R, KÜSTER E, et al. Chemical and ecotoxicological assessment of polycyclic aromatic hydrocarbon—contaminated sediments of the Niger Delta, Southern Nigeria [J]. Science of the Total Environment, 2005, 340(1/2/3): 123-136.
[51] WANG X T, MIAO Y, ZHANG Y, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk [J]. Science of the Total Environment, 2013, 447: 80-89. doi: 10.1016/j.scitotenv.2012.12.086
[52] LI W H, TIAN Y Z, SHI G L, et al. Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China [J]. Ecotoxicology and Environmental Safety, 2012, 75: 198-206. doi: 10.1016/j.ecoenv.2011.08.021
[53] QU Y J, GONG Y W, MA J, et al. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China [J]. Environmental Pollution, 2020, 260: 114016. doi: 10.1016/j.envpol.2020.114016
[54] LARSEN R K 3rd, BAKER J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods [J]. Environmental Science & Technology, 2003, 37(9): 1873-1881.
[55] SIMCIK M F, EISENREICH S J, LIOY P J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan [J]. Atmospheric Environment, 1999, 33(30): 5071-5079. doi: 10.1016/S1352-2310(99)00233-2
[56] FRASER M P, CASS G R, SIMONEIT B R T, et al. Air quality model evaluation data for organics. 4. C2−C36 Non-Aromatic Hydrocarbons [J]. Environmental Science & Technology, 1997, 31(8): 2356-2367.
[57] MOTELAY-MASSEI A, HARNER T, SHOEIB M, et al. Using passive air samplers to assess urban-rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides [J]. Environmental Science & Technology, 2005, 39(15): 5763-5773.