[1] YOSHIDA H. LXIII. —chemistry of lacquer (urushi). part I. communication from the chemical society of tokio [J]. J Chem Soc, Trans, 1883, 43: 472-486. doi: 10.1039/CT8834300472
[2] FAURE D, BOUILLANT M, BALLY R. Comparative study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae laccases [J]. Applied and Environmental Microbiology, 1995, 61(3): 1144-1146. doi: 10.1128/aem.61.3.1144-1146.1995
[3] DWIVEDI U N, SINGH P, PANDEY V P, et al. Structure-function relationship among bacterial, fungal and plant laccases [J]. Journal of Molecular Catalysis B:Enzymatic, 2011, 68(2): 117-128. doi: 10.1016/j.molcatb.2010.11.002
[4] ENDO K, HOSONO K, BEPPU T, et al. A novel extracytoplasmic phenol oxidase of Streptomyces: Its possible involvement in the onset of morphogenesis[J]. Microbiology (Reading, England), 2002, 148(Pt 6): 1767-1776.
[5] DARONCH N A, KELBERT M, PEREIRA C S, et al. Elucidating the choice for a precise matrix for laccase immobilization: A review [J]. Chemical Engineering Journal, 2020, 397: 125506. doi: 10.1016/j.cej.2020.125506
[6] LEONOWICZ A, CHO N, LUTEREK J, et al. Fungal laccase: Properties and activity on lignin [J]. Journal of Basic Microbiology, 2001, 41(3/4): 185-227.
[7] ZUCCA P, COCCO G, SOLLAI F, et al. Fungal laccases as tools for biodegradation of industrial dyes [J]. Biocatalysis, 2016, 1(1): 82-108.
[8] 王苗苗. 介孔二氧化硅磁性复合微球的制备及漆酶固定化[D]. 北京: 北京工业大学, 2012. WANG M M. Mesoporous silica magnetic composite microspheres: Preparation and laccase immobilization[D]. Beijing: Beijing University of Technology, 2012(in Chinese).
[9] 谢柏盛, 贾红华, 谢迎春, 等. 金属框架结构材料MOF-199对漆酶的固定化及其性质 [J]. 生物加工过程, 2011, 9(5): 6-10. doi: 10.3969/j.issn.1672-3678.2011.05.02 XIE B S, JIA H H, XIE Y C, et al. Immobilized laccase and its properties by metal organic framework MOF-199 [J]. Chinese Journal of Bioprocess Engineering, 2011, 9(5): 6-10(in Chinese). doi: 10.3969/j.issn.1672-3678.2011.05.02
[10] 彭凌洁. 壳聚糖基水滑石复合材料合成及漆酶固定化研究[D]. 青岛: 青岛科技大学, 2018. PENG L J. Synthesis of chitosan/layered double hydroxides composite material and immobilization of laccase[D]. Qingdao: Qingdao University of Science & Technology, 2018(in Chinese).
[11] LIU W J, JIANG H, YU H Q. Emerging applications of biochar-based materials for energy storage and conversion [J]. Energy & Environmental Science, 2019, 12(6): 1751-1779.
[12] LEE S J, THEERTHAGIRI J, NITHYADHARSENI P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: A review [J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110849. doi: 10.1016/j.rser.2021.110849
[13] YIN Z F, CUI C J, CHEN H, et al. The application of carbon nanotube/graphene-based nanomaterials in wastewater treatment [J]. Small, 2020, 16(15): 1902301. doi: 10.1002/smll.201902301
[14] JIANG L H, LIU Y G, LIU S B, et al. Adsorption of estrogen contaminants by graphene nanomaterials under natural organic matter preloading: Comparison to carbon nanotube, biochar, and activated carbon [J]. Environmental Science & Technology, 2017, 51(11): 6352-6359.
[15] JONES S M, SOLOMON E I. Electron transfer and reaction mechanism of laccases [J]. Cellular and Molecular Life Sciences:CMLS, 2015, 72(5): 869-883. doi: 10.1007/s00018-014-1826-6
[16] CLAUS H. Laccases: structure, reactions, distribution [J]. Micron, 2004, 35(1/2): 93-96.
[17] ARESKOGH D, LI J B, NOUSIAINEN P, et al. Oxidative polymerisation of models for phenolic lignin end-groups by laccase [J]. Holzforschung, 2010, 64(1): 21-34.
[18] GAVRILAS S, DUMITRU F, STANESCU M D. Commercial laccase oxidation of phenolic compounds [J]. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2012, 74: 3-10.
[19] FENG Y P, COLOSI L M, GAO S X, et al. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions: Reaction rates, products, and pathways [J]. Environmental Science & Technology, 2013, 47(2): 1001-1008.
[20] 季立才, 胡培植. 漆酶的结构、功能及其应用 [J]. 氨基酸和生物资源, 1996, 18(1): 25-29. doi: 10.14188/j.ajsh.1996.01.010 I L C, HU P Z. Structure, fucntion and application of laccase [J]. Amino Acids & Biotic Resources, 1996, 18(1): 25-29(in Chinese). doi: 10.14188/j.ajsh.1996.01.010
[21] 初华丽, 梁宗琦. 漆酶的潜在应用价值 [J]. 山地农业生物学报, 2004, 23(6): 529-533. doi: 10.15958/j.cnki.sdnyswxb.2004.06.015 CHU H L, LIANG Z Q. New potential application of laccase [J]. Journal of Mountain Agriculture and Biology, 2004, 23(6): 529-533(in Chinese). doi: 10.15958/j.cnki.sdnyswxb.2004.06.015
[22] VIRK A P, PURI M, GUPTA V, et al. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint [J]. PLoS One, 2013, 8(8): e72346. doi: 10.1371/journal.pone.0072346
[23] COUTO S R. Decolouration of industrial azo dyes by crude laccase from Trametes hirsuta [J]. Journal of Hazardous Materials, 2007, 148(3): 768-770. doi: 10.1016/j.jhazmat.2007.06.123
[24] WANG F, OWUSU-FORDJOUR M, XU L, et al. Immobilization of laccase on magnetic Chelator nanoparticles for apple juice clarification in magnetically stabilized fluidized bed [J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 589. doi: 10.3389/fbioe.2020.00589
[25] CHAIRIN T, NITHERANONT T, WATANABE A, et al. Biodegradation of bisphenol A and decolorization of synthetic dyes by laccase from white-rot fungus, Trametes polyzona [J]. Applied Biochemistry and Biotechnology, 2013, 169(2): 539-545. doi: 10.1007/s12010-012-9990-3
[26] LIU Q Z, LIU J, HONG D, et al. Fungal laccase-triggered 17β-estradiol humification kinetics and mechanisms in the presence of humic precursors [J]. Journal of Hazardous Materials, 2021, 412: 125197. doi: 10.1016/j.jhazmat.2021.125197
[27] SUN K, KANG F X, WAIGI M G, et al. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid [J]. Environmental Pollution, 2017, 220: 105-111. doi: 10.1016/j.envpol.2016.09.028
[28] 杨奇. 碳纳米管固定化漆酶吸附降解水中刚果红染料的研究[D]. 广州: 广东工业大学, 2019. YANG Q. Study on the adsorption of Congo red dye in water by carbon nanotubes immobilized laccase[D]. Guangzhou: Guangdong University of Technology, 2019(in Chinese).
[29] KHATAMI S H, VAKILI O, MOVAHEDPOUR A, et al. Laccase: Various types and applications [J]. Biotechnology and Applied Biochemistry, 2022: 1-15.
[30] HOMAEI A A, SARIRI R, VIANELLO F, et al. Enzyme immobilization: An update [J]. Journal of Chemical Biology, 2013, 6(4): 185-205. doi: 10.1007/s12154-013-0102-9
[31] GOMES-RUFFI C R, da CUNHA R H, ALMEIDA E L, et al. Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage [J]. LWT, 2012, 49(1): 96-101. doi: 10.1016/j.lwt.2012.04.014
[32] NJOKU V O, FOO K Y, ASIF M, et al. Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption [J]. Chemical Engineering Journal, 2014, 250: 198-204. doi: 10.1016/j.cej.2014.03.115
[33] FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation [J]. Applied Catalysis B:Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036
[34] RAMÍREZ-MONTOYA L A, HERNÁNDEZ-MONTOYA V, MONTES-MORÁN M A, et al. Correlation between mesopore volume of carbon supports and the immobilization of laccase from Trametes versicolor for the decolorization of Acid Orange 7 [J]. Journal of Environmental Management, 2015, 162: 206-214.
[35] DONG S P, JING X P, CAO Y, et al. Non-covalent assembled laccase-graphene composite: Property, stability and performance in beta-blocker removal [J]. Environmental Pollution, 2019, 252: 907-916. doi: 10.1016/j.envpol.2019.05.053
[36] LONAPPAN L, LIU Y X, ROUISSI T, et al. Covalent immobilization of laccase on citric acid functionalized micro-biochars derived from different feedstock and removal of diclofenac [J]. Chemical Engineering Journal, 2018, 351: 985-994. doi: 10.1016/j.cej.2018.06.157
[37] IMAM A, SUMAN S K, SINGH R, et al. Application of laccase immobilized rice straw biochar for anthracene degradation [J]. Environmental Pollution, 2021, 268: 115827. doi: 10.1016/j.envpol.2020.115827
[38] KAUR N, BHARDWAJ P, SINGH G, et al. Applicative insights on nascent role of biochar production, tailoring and immobilization in enzyme industry-A review [J]. Process Biochemistry, 2021, 107: 153-163. doi: 10.1016/j.procbio.2021.05.017
[39] SAMAK N A, TAN Y Q, SUI K Y, et al. CotA laccase immobilized on functionalized magnetic graphene oxide nano-sheets for efficient biocatalysis [J]. Molecular Catalysis, 2018, 445: 269-278. doi: 10.1016/j.mcat.2017.12.004
[40] ZHANG C Y, YOU S P, LIU Y D, et al. Construction of Luffa sponge-based magnetic carbon nanocarriers for laccase immobilization and its application in the removal of bisphenol A [J]. Bioresource Technology, 2020, 305: 123085. doi: 10.1016/j.biortech.2020.123085
[41] SHAO B B, LIU Z F, ZENG G M, et al. Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal [J]. Journal of Hazardous Materials, 2019, 362: 318-326. doi: 10.1016/j.jhazmat.2018.08.069
[42] XU R, TANG R Z, ZHOU Q J, et al. Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes [J]. Chemical Engineering Journal, 2015, 262: 88-95. doi: 10.1016/j.cej.2014.09.072
[43] COSTA J B, LIMA M J, SAMPAIO M J, et al. Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes [J]. Chemical Engineering Journal, 2019, 355: 974-985. doi: 10.1016/j.cej.2018.08.178
[44] MASJOUDI M, GOLGOLI M, GHOBADI NEJAD Z, et al. Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes [J]. Chemosphere, 2021, 263: 128043. doi: 10.1016/j.chemosphere.2020.128043
[45] HABIMANA P, GAO J, MWIZERWA J P, et al. Improvement of laccase activity via covalent immobilization over mesoporous silica coated magnetic multiwalled carbon nanotubes for the discoloration of synthetic dyes [J]. ACS Omega, 2021, 6(4): 2777-2789. doi: 10.1021/acsomega.0c05081
[46] NAGHDI M, TAHERAN M, BRAR S K, et al. Pinewood nanobiochar: A unique carrier for the immobilization of crude laccase by covalent bonding [J]. International Journal of Biological Macromolecules, 2018, 115: 563-571. doi: 10.1016/j.ijbiomac.2018.04.105
[47] WANG Z, REN D, WU J, et al. Study on adsorption-degradation of 2, 4-dichlorophenol by modified biochar immobilized laccase [J]. International Journal of Environmental Science and Technology, 2022, 19(3): 1393-1406. doi: 10.1007/s13762-021-03151-2
[48] NAGHDI M, TAHERAN M, BRAR S K, et al. Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine [J]. Science of the Total Environment, 2017, 584/585: 393-401. doi: 10.1016/j.scitotenv.2017.01.021
[49] GENNARI A, FÜHR A J, VOLPATO G, et al. Magnetic cellulose: Versatile support for enzyme immobilization - A review [J]. Carbohydrate Polymers, 2020, 246: 116646. doi: 10.1016/j.carbpol.2020.116646
[50] QIU H J, XU C X, HUANG X R, et al. Immobilization of laccase on nanoporous gold: Comparative studies on the immobilization strategies and the particle size effects [J]. The Journal of Physical Chemistry C, 2009, 113(6): 2521-2525. doi: 10.1021/jp8090304
[51] LIN J H, LIU Y J, CHEN S, et al. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal [J]. International Journal of Biological Macromolecules, 2016, 84: 189-199. doi: 10.1016/j.ijbiomac.2015.12.013
[52] LONAPPAN L, LIU Y X, ROUISSI T, et al. Adsorptive immobilization of agro-industrially produced crude laccase on various micro-biochars and degradation of diclofenac [J]. Science of the Total Environment, 2018, 640/641: 1251-1258. doi: 10.1016/j.scitotenv.2018.06.005
[53] SKORONSKI E, SOUZA D H, ELY C, et al. Immobilization of laccase from Aspergillus oryzae on graphene nanosheets [J]. International Journal of Biological Macromolecules, 2017, 99: 121-127. doi: 10.1016/j.ijbiomac.2017.02.076
[54] ASGHER M, NOREEN S, BILAL M. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers [J]. International Journal of Biological Macromolecules, 2017, 95: 54-62. doi: 10.1016/j.ijbiomac.2016.11.012
[55] le T T, MURUGESAN K, LEE C S, et al. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads [J]. Bioresource Technology, 2016, 216: 203-210. doi: 10.1016/j.biortech.2016.05.077
[56] QIU X, WANG Y, XUE Y, et al. Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation [J]. Chemical Engineering Journal, 2020, 391: 123564. doi: 10.1016/j.cej.2019.123564
[57] RAHMANI H, LAKZIAN A, KARIMI A, et al. Efficient removal of 2, 4-dinitrophenol from synthetic wastewater and contaminated soil samples using free and immobilized laccases [J]. Journal of Environmental Management, 2020, 256: 109740. doi: 10.1016/j.jenvman.2019.109740
[58] FERNÁNDEZ-FERNÁNDEZ M, SANROMÁN M Á, MOLDES D. Recent developments and applications of immobilized laccase [J]. Biotechnology Advances, 2013, 31(8): 1808-1825. doi: 10.1016/j.biotechadv.2012.02.013
[59] MOHAMAD N R, MARZUKI N H C, BUANG N A, et al. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes [J]. Biotechnology & Biotechnological Equipment, 2015, 29(2): 205-220.
[60] YANG J J, MA X X, ZHANG Z S, et al. Lipase immobilized by modification-coupled and adsorption-cross-linking methods: A comparative study [J]. Biotechnology Advances, 2010, 28(5): 644-650. doi: 10.1016/j.biotechadv.2010.05.014
[61] KAH M, SIGMUND G, XIAO F, et al. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials [J]. Water Research, 2017, 124: 673-692. doi: 10.1016/j.watres.2017.07.070
[62] PENG H B, PAN B, WU M, et al. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: Hydrophobicity- and structure-controlled process [J]. Journal of Hazardous Materials, 2012, 233/234: 89-96. doi: 10.1016/j.jhazmat.2012.06.058
[63] CHU G, ZHAO J, HUANG Y, et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores [J]. Environmental Pollution, 2018, 240: 1-9. doi: 10.1016/j.envpol.2018.04.003
[64] SUN K, HONG D, LIU J, et al. Trametes versicolor laccase-assisted oxidative coupling of estrogens: Conversion kinetics, linking mechanisms, and practical applications in water purification [J]. Science of the Total Environment, 2021, 782: 146917. doi: 10.1016/j.scitotenv.2021.146917
[65] NGUYEN L N, HAI F I, DOSSETO A, et al. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor [J]. Bioresource Technology, 2016, 210: 108-116. doi: 10.1016/j.biortech.2016.01.014
[66] 曾涵, 龚兰新. 高分子聚合物-多壁碳纳米管复合物固定漆酶及其在玻碳电极上的直接电子转移 [J]. 应用化学, 2012, 29(6): 682-690. ZENG H, GONG L X. Immobilization of laccase on multiwall carbon nanotubes-polymers composites and their direct electron transfer on glassy carbon electrode [J]. Chinese Journal of Applied Chemistry, 2012, 29(6): 682-690(in Chinese).
[67] 陈明雨, 倪烜, 司友斌, 等. 固定化真菌漆酶在环境有机污染修复中的应用研究进展 [J]. 生物技术通报, 2021, 37(6): 244-258. CHEN M Y, NI X, SI Y B, et al. Advances in the application of immobilized fungal laccase for the bioremediation of environmental organic contamination [J]. Biotechnology Bulletin, 2021, 37(6): 244-258(in Chinese).
[68] LIU Y Y, ZENG Z T, ZENG G M, et al. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds [J]. Bioresource Technology, 2012, 115: 21-26. doi: 10.1016/j.biortech.2011.11.015
[69] THIYAGARAJAN P, SELVAM K, SUDHAKAR C, et al. Enhancement of adsorption of magenta dye by immobilized laccase on functionalized biosynthesized activated carbon nanotubes [J]. Water, Air, & Soil Pollution, 2020, 231(7): 1-9.
[70] LI N, XIA Q Y, NIU M H, et al. Immobilizing laccase on different species wood biochar to remove the chlorinated biphenyl in wastewater [J]. Scientific Reports, 2018, 8: 13947. doi: 10.1038/s41598-018-32013-0
[71] SATHISHKUMAR P, CHAE J C, UNNITHAN A R, et al. Laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac [J]. Enzyme and Microbial Technology, 2012, 51(2): 113-118. doi: 10.1016/j.enzmictec.2012.05.001