[1] |
刘智军. 超声波除藻抑藻及藻渣最终处理系统研究[D]. 重庆: 重庆大学, 2011.
LIU Z J. Research on removal and inhibition of algae by ultrasound and algal residue final processing system[D]. Chongqing: Chongqing University, 2011(in Chinese).
|
[2] |
宋琪. Fe2+/过硫酸盐去除铜绿微囊藻及其生态风险研究[D]. 广州: 华南理工大学, 2020.
SONG Q. Removal of Microcystis aeruginosa by Fe2+/persulfate and its ecological risk[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
|
[3] |
于广丽. 微囊藻毒素降解方法研究进展 [J]. 安徽农业科学, 2008, 36(2): 714-715,740. doi: 10.3969/j.issn.0517-6611.2008.02.141
YU G L. Research progress of degradation methods of microcystins [J]. Journal of Anhui Agricultural Sciences, 2008, 36(2): 714-715,740(in Chinese). doi: 10.3969/j.issn.0517-6611.2008.02.141
|
[4] |
吴刚, 席宇, 赵以军. 溶藻细菌研究的最新进展 [J]. 环境科学研究, 2002, 15(5): 43-46. doi: 10.3321/j.issn:1001-6929.2002.05.011
WU G, XI Y, ZHAO Y J. The latest development of research on algae-lysing bacteria [J]. Research of Environmental Sciences, 2002, 15(5): 43-46(in Chinese). doi: 10.3321/j.issn:1001-6929.2002.05.011
|
[5] |
肖海文, 刘馨瞳, 翟俊, 等. 人工湿地类型的选择及案例分析 [J]. 中国给水排水, 2021, 37(22): 11-17. doi: 10.19853/j.zgjsps.1000-4602.2021.22.002
XIAO H W, LIU X T, ZHAI J, et al. Type selection of constructed wetlands and related design case analysis [J]. China Water & Wastewater, 2021, 37(22): 11-17(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2021.22.002
|
[6] |
何娜, 张玉龙, 孙占祥, 等. 水生植物修复氮、磷污染水体研究进展 [J]. 环境污染与防治, 2012, 34(3): 73-78. doi: 10.3969/j.issn.1001-3865.2012.03.016
HE N, ZHANG Y L, SUN Z X, et al. Research advances on phytoremediation of nitrogen and phosphorus polluted water by aquatic macrophytes [J]. Environmental Pollution & Control, 2012, 34(3): 73-78(in Chinese). doi: 10.3969/j.issn.1001-3865.2012.03.016
|
[7] |
廖明晶, 范敬龙, 匡代洪, 等. 种植多枝柽柳的模拟人工湿地对模拟污水中氮、磷、铅和镉的去除率研究 [J]. 湿地科学, 2021, 19(6): 715-725. doi: 10.13248/j.cnki.wetlandsci.2021.06.008
LIAO M J, FAN J L, KUANG D H, et al. Removal rates of nitrogen, phosphorus, lead and cadmium from simulated effluent in simulated constructed wetlands planted with Tamarix ramosissima [J]. Wetland Science, 2021, 19(6): 715-725(in Chinese). doi: 10.13248/j.cnki.wetlandsci.2021.06.008
|
[8] |
李先宁, 吕锡武, 宋海亮, 等. 水耕植物过滤法净水系统底泥硝化反硝化潜力 [J]. 环境科学, 2005, 26(2): 93-97. doi: 10.3321/j.issn:0250-3301.2005.02.019
LI X N, LU X W, SONG H L, et al. Potential of nitrification and denitrification in water purification system with hydroponic bio-filter method [J]. Environmental Science, 2005, 26(2): 93-97(in Chinese). doi: 10.3321/j.issn:0250-3301.2005.02.019
|
[9] |
吕成旭. 蓝藻衰亡分解对N2O释放通量及产生途径的影响研究[D]. 南京: 南京师范大学, 2021.
LU C X. Effect of cyanobacteria decay decomposition on N2O emission flux and production pathway[D]. Nanjing: Nanjing Normal University, 2021(in Chinese).
|
[10] |
田勇. 南水北调中线总干渠叶绿素a与藻密度相关性研究 [J]. 人民长江, 2019, 50(2): 65-69. doi: 10.16232/j.cnki.1001-4179.2019.02.012
TIAN Y. Study on correlation of Chlorophyll-a and Algal density in main canal of Middle Route of South-to-North Water Diversion Project [J]. Yangtze River, 2019, 50(2): 65-69(in Chinese). doi: 10.16232/j.cnki.1001-4179.2019.02.012
|
[11] |
董小娜, 陈泽慧, 毛林强, 等. 微生物溶藻进程与机制的三维荧光分析方法 [J]. 环境化学, 2018, 37(6): 1337-1342. doi: 10.7524/j.issn.0254-6108.2017091206
DONG X N, CHEN Z H, MAO L Q, et al. Three-dimensional fluorescence analysis of the processes and mechanisms of algae-lysing by microorganism [J]. Environmental Chemistry, 2018, 37(6): 1337-1342(in Chinese). doi: 10.7524/j.issn.0254-6108.2017091206
|
[12] |
许明宸, 张文艺, 毛林强. 太湖土著田螺消化道中溶藻菌XMC溶藻进程与叶绿素a降解动力学研究 [J]. 环境化学, 2021, 40(6): 1855-1861. doi: 10.7524/j.issn.0254-6108.2020020602
XU M C, ZHANG W Y, MAO L Q. Study on algae-lysing process and chlorophyll-a degradation kinetics of algicidal bacteria XMC in the digestive tract of indigenous field snails of Taihu Lake [J]. Environmental Chemistry, 2021, 40(6): 1855-1861(in Chinese). doi: 10.7524/j.issn.0254-6108.2020020602
|
[13] |
FAN D, DU B H, ZHOU J J, et al. Porous self-floating 3D Ag2O/g-C3N4 hydrogel and photocatalytic inactivation of Microcystis aeruginosa under visible light [J]. Chemical Engineering Journal, 2021, 404: 126509. doi: 10.1016/j.cej.2020.126509
|
[14] |
张薛薇, 开振鹏, 宋卫国, 等. 50种常用香料对铜绿微囊藻的生态毒性效应 [J]. 中国环境科学, 2021, 41(3): 1429-1435. doi: 10.3969/j.issn.1000-6923.2021.03.047
ZHANG X W, KAI Z P, SONG W G, et al. Ecotoxicological effects of 50 kinds of fragrance materials on Microcystis aeruginosa [J]. China Environmental Science, 2021, 41(3): 1429-1435(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.047
|
[15] |
CRUCES E, BARRIOS A C, CAHUE Y P, et al. Similar toxicity mechanisms between graphene oxide and oxidized multi-walled carbon nanotubes in Microcystis aeruginosa [J]. Chemosphere, 2021, 265: 129137. doi: 10.1016/j.chemosphere.2020.129137
|
[16] |
VYMAZAL. J. Emergent plants used in free water surface constructed wetlands: A review [J]. Ecological Engineering, 2013, 61: 582-592. doi: 10.1016/j.ecoleng.2013.06.023
|
[17] |
ZHENG Y C, SUN Z Z, LIU Y, et al. Phytoremediation mechanisms and plant eco-physiological response to microorganic contaminants in integrated vertical-flow constructed wetlands [J]. Journal of Hazardous Materials, 2022, 424: 127611. doi: 10.1016/j.jhazmat.2021.127611
|
[18] |
GU, X S, CHEN D Y, WU F, et al. Function of aquatic plants on nitrogen removal and greenhouse gas emission in enhanced denitrification constructed wetlands: Iris Pseudacorus for example [J]. Journal of Cleaner Production, 2022, 330: 129842. doi: 10.1016/j.jclepro.2021.129842
|
[19] |
SU J F, SHAO S C, MA F, et al. Bacteriological control by Raoultella sp. R11 on growth and toxins production of Microcystis aeruginosa [J]. Chemical Engineering Journal, 2016, 293: 139-150. doi: 10.1016/j.cej.2016.02.044
|
[20] |
ZHOU S Q, BU L J, SHI Z, et al. Electrochemical inactivation of Microcystis aeruginosa using BDD electrodes: Kinetic modeling of microcystins release and degradation [J]. Journal of Hazardous Materials, 2018, 346: 73-81. doi: 10.1016/j.jhazmat.2017.12.023
|
[21] |
尹黎燕, 黄家权, 沈强, 等. 烟草悬浮细胞抗氧化系统对微囊藻毒素-RR的响应 [J]. 中国环境科学, 2005, 25(5): 576-580. doi: 10.3321/j.issn:1000-6923.2005.05.016
YIN L Y, HUANG J Q, SHEN Q, et al. Responses of antioxidant systems in tobacco BY-2 suspension cells to the toxicity of microcystin-RR [J]. China Environmental Science, 2005, 25(5): 576-580(in Chinese). doi: 10.3321/j.issn:1000-6923.2005.05.016
|
[22] |
刘国锋, 韩士群, 刘学芝, 等. 藻华聚集的环境效应: 对漂浮植物水葫芦(Eichharnia crassipes)抗氧化酶活性的影响 [J]. 湖泊科学, 2016, 28(1): 31-39. doi: 10.18307/2016.0104
LIU G F, HAN S Q, LIU X Z, et al. The environmental effects of algae bloom cluster: Impact on the antioxidant enzyme activities of water hyacinth(Eichharnia crassipes) [J]. Journal of Lake Sciences, 2016, 28(1): 31-39(in Chinese). doi: 10.18307/2016.0104
|
[23] |
SU J F, MA M, WEI L, et al. Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water [J]. Marine Pollution Bulletin, 2016, 107(1): 233-239. doi: 10.1016/j.marpolbul.2016.03.066
|
[24] |
HE L, LIN Z Y, WANG Y M, et al Facilitating harmful algae removal in fresh water via joint effects of multi-species algicidal bacteria[J]. Journal of Hazardous Materials, 2021, 403: 123662.
|
[25] |
NI L X, ACHARYA K, HAO X Y, et al. Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae [J]. Chemosphere, 2012, 88(9): 1051-1057. doi: 10.1016/j.chemosphere.2012.05.009
|
[26] |
韩梅傲雪. 赤潮微藻米氏凯伦藻对亚油酸抑制作用的响应及其细胞凋亡机制研究[D]. 曲阜: 曲阜师范大学, 2018.
HAN M A X. Studies on the inhibiting effect and the mechanisms of cell apoptosis in Karenia mikimotoi exposed to linoleic acid[D]. Qufu: Qufu Normal University, 2018(in Chinese).
|
[27] |
MOURA D S, PESTANA C J, MOFFAT C F, et al. Adsorption of cyanotoxins on polypropylene and polyethylene terephthalate: Microplastics as vector of eight microcystin analogues [J]. Environmental Pollution, 2022, 303: 119135. doi: 10.1016/j.envpol.2022.119135
|
[28] |
XU M L, TSONA N T, LI J L, et al. Atmospheric chemical processes of microcystin-LR at the interface of sea spray aerosol [J]. Chemosphere, 2022, 294: 133726. doi: 10.1016/j.chemosphere.2022.133726
|
[29] |
郑琳琳, 李海滨, 唐厚全, 等. 高通量测序分析小清河济南段微生物群落结构 [J]. 济南大学学报(自然科学版), 2022, 36(2): 221-224,236. doi: 10.13349/j.cnki.jdxbn.20211216.001
ZHENG L L, LI H B, TANG H Q, et al. High-throughput sequencing analysis of microbial community structure in Jinan section of the Xiaoqing River [J]. Journal of University of Jinan (Science and Technology), 2022, 36(2): 221-224,236(in Chinese). doi: 10.13349/j.cnki.jdxbn.20211216.001
|
[30] |
梁倩, 李书琴, 杨会君. PCA-SVM在芳香族化合物生物降解性QSBR研究中的应用 [J]. 计算机与应用化学, 2012, 29(3): 355-359. doi: 10.3969/j.issn.1001-4160.2012.03.024
LIANG Q, LI S Q, YANG H J. Application of PCA-SVM in the QSBR study on biodegradability of aromatic compounds [J]. Computers and Applied Chemistry, 2012, 29(3): 355-359(in Chinese). doi: 10.3969/j.issn.1001-4160.2012.03.024
|