[1] LIU S J, WANG X D, GUO G L, et al. Status and environmental management of soil mercury pollution in China: A review [J]. Journal of Environmental Management, 2021, 27: 111442.
[2] 孟博, 胡海燕, 李平, 等. 稻田生态系统汞的形态转化及同位素分馏 [J]. 矿物岩石地球化学通报, 2020, 39(1): 12-23,3. MENG B, HU H Y, LI P, et al. Transformation and stable isotope fractionation of mercury in the rice paddy ecosystem [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 12-23,3(in Chinese).
[3] SIMPSON V R, STUART N C, MUNRO R, et al. Poisoning of dairy heifers by mercurous chloride [J]. The Veterinary Record, 1997, 140(21): 549-552. doi: 10.1136/vr.140.21.549
[4] LI X Y, ZHANG J R, GONG Y W, et al. Status of mercury accumulation in agricultural soils across China (1976-2016) [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110564. doi: 10.1016/j.ecoenv.2020.110564
[5] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析 [J]. 农业环境科学学报, 2017, 36(9): 1689-1692. CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination [J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692(in Chinese).
[6] LIANG P, WU S C, ZHANG C, et al. The role of antibiotics in mercury methylation in marine sediments [J]. Journal of Hazardous Materials, 2018, 360: 1-5. doi: 10.1016/j.jhazmat.2018.07.096
[7] 李平, 陈敏, 王波. 中国居民甲基汞暴露的来源和健康风险 [J]. 矿物岩石地球化学通报, 2019, 38(4): 725-728,661. LI P, CHEN M, WANG B. Sources and health risks of methylmercury exposure in Chinese residents [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(4): 725-728,661(in Chinese).
[8] ZHAO L, ANDERSON C W N, QIU G L, et al. Mercury methylation in paddy soil: Source and distribution of mercury species at a Hg mining area, Guizhou Province, China [J]. Biogeosciences, 2016, 13(8): 2429-2440. doi: 10.5194/bg-13-2429-2016
[9] TANNER K C, WINDHAM-MYERS L, MARVIN-DIPASQUALE M, et al. Alternate wetting and drying decreases methylmercury in flooded rice (Oryza sativa) systems [J]. Soil Science Society of America Journal, 2018, 82(1): 115-125. doi: 10.2136/sssaj2017.05.0158
[10] 牟树森, 青长乐. 环境土壤学[M]. 北京: 农业出版社, 1993. MOU S S, QING C L. Environmental soil science[M]. Beijing: China Agriculture Press, 1993 (in Chinese).
[11] ZHAO C, GAO S J, ZHOU L, et al. Dissolved organic matter in urban forestland soil and its interactions with typical heavy metals: A case of Daxing District, Beijing [J]. Environmental Science and Pollution Research International, 2019, 26(3): 2960-2973. doi: 10.1007/s11356-018-3860-7
[12] OLE K B, PETER E H, BJARNE W S. Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: A review [J]. Geoderma, 2019, 343: 235-246. doi: 10.1016/j.geoderma.2019.02.041
[13] LIU P, PTACEK C J, BLOWES D W. Mercury complexation with dissolved organic matter released from thirty-six types of biochar [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(1): 175-180. doi: 10.1007/s00128-018-2397-2
[14] SCHARTUP A T, BALCOM P H, MASON R P. Sediment-porewater partitioning, total sulfur, and methylmercury production in estuaries [J]. Environmental Science & Technology, 2014, 48(2): 954-960.
[15] LOUX N T. An assessment of mercury-species-dependent binding with natural organic carbon [J]. Chemical Speciation & Bioavailability, 1998, 10(4): 127-136.
[16] ALLARD B, ARSENIE I. Abiotic reduction of mercury by humic substances in aquatic system—an important process for the mercury cycle [J]. Water Air & Soil Pollution, 1991, 56(1): 457-464.
[17] LIANG P, LI Y C, ZHANG C, et al. Effects of salinity and humic acid on the sorption of Hg on Fe and Mn hydroxides [J]. Journal of Hazardous Materials, 2013, 244/245: 322-328. doi: 10.1016/j.jhazmat.2012.11.050
[18] GU B H, BIAN Y R, L MILLER C L, et al. Mercury reduction and complexation by natural organic matter in anoxic environments [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1479-1483. doi: 10.1073/pnas.1008747108
[19] 何杉杉, 尤琼智, 吴胜春, 等. 渔业养殖区水环境中汞的形态分布 [J]. 环境化学, 2015, 34(10): 1911-1917. HE S S, YOU Q Z, WU S C, et al. Distribution of mercury species in aquatic environment in marine aquaculture zones [J]. Environmental Chemistry, 2015, 34(10): 1911-1917(in Chinese).
[20] XU Z T, WU S C, CHRISTIE P, et al. Impacts of estuarine dissolved organic matter and suspended particles from fish farming on the biogeochemical cycling of mercury in Zhoushan island, eastern China Sea [J]. Science of the Total Environment, 2020, 705(C): 135921.
[21] 陈春羽, 王定勇. 水溶性有机质对土壤及底泥中汞吸附行为的影响 [J]. 环境科学学报, 2009, 29(2): 312-317. CHEN C Y, WANG D Y. Effect of dissolved organic matter on adsorption of mercury by soils and sediment [J]. Acta Scientiae Circumstantiae, 2009, 29(2): 312-317(in Chinese).
[22] 何鑫龙, 裴福云, 吴胜春, 等. 渔业养殖区溶解性有机质的来源、组成及其对汞甲基化的影响 [J]. 环境科学学报, 2021, 41(10): 4097-4106. HE X L, PEI F Y, WU S C, et al. The sources, composition and influence of dissolved organic matter on mercury methylation in fish aquaculture area [J]. Acta Scientiae Circumstantiae, 2021, 41(10): 4097-4106(in Chinese).
[23] WANG P C, PENG H, LIU J L, et al. Effects of exogenous dissolved organic matter on the adsorption-desorption behaviors and bioavailabilities of Cd and Hg in a plant-soil system [J]. Science of the Total Environment, 2020, 728: 138252. doi: 10.1016/j.scitotenv.2020.138252
[24] 万合锋, 龙朝波, 兰晨, 等. 满江红资源化利用及对环境修复作用的研究进展 [J]. 福建农业学报, 2015, 30(11): 1120-1126. WAN H F, LONG C B, LAN C, et al. Research progress on utilization of Azolla and Its potential contribution to environmental restoration [J]. Fujian Journal of Agricultural Sciences, 2015, 30(11): 1120-1126(in Chinese).
[25] 周兵. 伴生蕨类植物满江红提取物对水稻生长的影响 [J]. 热带作物学报, 2011, 32(7): 1229-1234. ZHOU B. Effects of companion fern Azolla imbricata extracts on rice growth [J]. Chinese Journal of Tropical Crops, 2011, 32(7): 1229-1234(in Chinese).
[26] COHEN-SHOEL N, LLZYCER D, GILATH I, et al. The involvement of pectin in Sr2+ biosorption by azolla [J]. Water, Air, and Soil Pollution, 2002, 135(1-4): 195-205.
[27] MAHSA H, RAHMAT Z, ROGHAYEH S. Uptake and accumulation of heavy metals by water body and Azolla filiculoides in the Anzali wetland [J]. Applied Water Science, 2021, 11(6): 91. doi: 10.1007/s13201-021-01428-y
[28] ARSHADI M, ABDOLMALEKI M K, MOUSAVINIA F, et al. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study [J]. Journal of Colloid And Interface Science, 2017, 486: 296-308. doi: 10.1016/j.jcis.2016.10.002
[29] NAGHIPOUR D, ASHRAFI S D, GHOLAMZADEH M, et al. Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla filiculoides from aqueous solution: A dataset [J]. Data in Brief, 2018, 21: 1409-1414. doi: 10.1016/j.dib.2018.10.111
[30] OHNO T, BRO R. Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes [J]. Soil Science Society of America Journal, 2006, 70(6): 2028-2037. doi: 10.2136/sssaj2006.0005
[31] RENNERT T, GOCKEL K F, MANSFELDT T. Extraction of water-soluble organic matter from mineral horizons of forest soils [J]. Journal of Plant Nutrition and Soil Science, 2007, 170(4): 514-521. doi: 10.1002/jpln.200625099
[32] LEENHEER J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters [J]. Environmental Science & Technology, 1981, 15(5): 578-587.
[33] 杨淇茹, 吴胜春, 李雨桐, 等. 应用XAD大孔树脂与阴阳离子交换树脂串联技术探究不同腐解时期鱼粪溶解性有机质组分差异 [J]. 江苏农业科学, 2019, 47(22): 303-307. YANG Q R, WU S C, LI Y T, et al. Study on distribution differences of various components of fish manure dissolved organic matter in different decomposingperiods based on XAD macroporous resin and anion-cation exchange resin series technology [J]. Jiangsu Agricultural Sciences, 2019, 47(22): 303-307(in Chinese).
[34] ŚWIETLIK J, DĄBROWSKA A, RACZYK-STANISŁAWIAK U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone [J]. Water Research, 2004, 38(3): 547-558. doi: 10.1016/j.watres.2003.10.034
[35] 蒋红梅, 冯新斌, 梁琏, 等. 蒸馏-乙基化GC-CVAFS法测定天然水体中的甲基汞 [J]. 中国环境科学, 2004, 24(5): 568-571. JIANG H M, FENG X B, LIANG L, et al. Determination of methyl mercury in waters by distillation-GC-CVAFS technique [J]. China Environmental Science, 2004, 24(5): 568-571(in Chinese).
[36] 朱伟健, 沈芳, 洪官林. 长江口及邻近海域有色溶解有机物(CDOM)的光学特性 [J]. 环境科学, 2010, 31(10): 2292-2298. ZHU W J, SHEN F, HONG G L. Optical characteristics of colored dissolved organic material(CDOM) in Yangtze Estuary [J]. Environmental Science, 2010, 31(10): 2292-2298(in Chinese).
[37] TWARDOWSKI M S, BOSS E, SULLIVAN J M, et al. Modeling the spectral shape of absorption by chromophoric dissolved organic matter [J]. Marine Chemistry, 2004, 89(1/2/3/4): 69-88.
[38] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955
[39] HE Y H, SONG N, JIANG H L. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes [J]. Environmental Science and Pollution Research International, 2018, 25(10): 9928-9939. doi: 10.1007/s11356-018-1267-0
[40] CHEN H L, ZHOU J M. Characterization of dissolved organic matter derived from rice straw at different decay stages[M]. Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 35-37.
[41] 梁俭, 江韬, 卢松, 等. 淹水条件下三峡库区典型消落带土壤释放DOM的光谱特征: 紫外-可见吸收光谱 [J]. 环境科学, 2016, 37(7): 2496-2505. LIANG J, JIANG T, LU S, et al. Spectral characteristics of dissolved organic matter(DOM) releases from soils of typical water-level fluctuation zones of Three Gorges reservoir areas: UV-vis spectrum [J]. Environmental Science, 2016, 37(7): 2496-2505(in Chinese).
[42] DILLING J, KAISER K. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry [J]. Water Research, 2002, 36(20): 5037-5044. doi: 10.1016/S0043-1354(02)00365-2
[43] DON A, KALBITZ K. Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages [J]. Soil Biology and Biochemistry, 2005, 37(12): 2171-2179. doi: 10.1016/j.soilbio.2005.03.019
[44] ALMENDROS G, DORADO J. Molecular characteristics related to the biodegradability of humic acid preparations [J]. European Journal of Soil Science, 1999, 50(2): 227-236. doi: 10.1046/j.1365-2389.1999.00240.x
[45] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy [J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3
[46] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038
[47] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary [J]. Organic Geochemistry, 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002
[48] BIRDWELL J E, VALSARAJ K T. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy [J]. Atmospheric Environment, 2010, 44(27): 3246-3253. doi: 10.1016/j.atmosenv.2010.05.055
[49] KALBITZ K, SCHWESIG D, SCHMERWITZ J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation [J]. Soil Biology and Biochemistry, 2003, 35(8): 1129-1142. doi: 10.1016/S0038-0717(03)00165-2
[50] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[51] 朱维晃, 黄廷林, 张亚宁. 氧化还原条件变化对上覆水体中溶解有机质的三维荧光光谱特征影响 [J]. 光谱学与光谱分析, 2010, 30(12): 3272-3276. ZHU W H, HUANG T L, ZHANG Y N. The influence of the redox conditions on the three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy of the dissolved organic matter (DOM) in the overlying water [J]. Spectroscopy and Spectral Analysis, 2010, 30(12): 3272-3276(in Chinese).
[52] ŚWIETLIK J, SIKORSKA E. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone [J]. Water Research, 2004, 38(17): 3791-3799. doi: 10.1016/j.watres.2004.06.010
[53] LAVOIE R A, AMYOT M, LAPIERRE J F. Global meta-analysis on the relationship between mercury and dissolved organic carbon in freshwater environments [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(6): 1580-1523.
[54] BURNS D A, AIKEN G R, BRADLEY P M, et al. Specific ultra-violet absorbance as an indicator of mercury sources in an Adirondack River Basin [J]. Biogeochemistry, 2013, 113(1/2/3): 451-466.
[55] MANGAL V, LAM W Y, HUANG H, et al. Molecular correlations of dissolved organic matter with inorganic mercury and methylmercury in Canadian boreal streams [J]. Biogeochemistry, 2022, 160(1): 127-144. doi: 10.1007/s10533-022-00944-6
[56] WANG Y Q, LIU J, VAN L N, et al. Binding strength of mercury (II) to different dissolved organic matter: The roles of DOM properties and sources [J]. The Science of the total environment, 2021, 807(P3): 150979.
[57] NAGASE H, OSE Y, SATO T, et al. Methylation of mercury by humic substances in an aquatic environment [J]. Science of the Total Environment, 1982, 25(2): 133-142. doi: 10.1016/0048-9697(82)90082-1
[58] 何小松, 席北斗, 魏自民, 等. 三维荧光光谱研究垃圾渗滤液水溶性有机物与汞相互作用 [J]. 分析化学, 2010, 38(10): 1417-1422. HE X S, XI B D, WEI Z M, et al. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of complexation between mercury(Ⅱ) and dissolved organic matter extracted from landfill leachate [J]. Chinese Journal of Analytical Chemistry, 2010, 38(10): 1417-1422(in Chinese).
[59] YIN Y J, ALIEN H E, HUANG C P, et al. Interaction of Hg (II) with soil-derived humic substances [J]. Analytica Chimica Acta, 1997, 341(1): 73-82. doi: 10.1016/S0003-2670(96)00509-0
[60] SHANLEY J B, TAYLOR V F, RYAN K A, et al. Using dissolved organic matter fluorescence to predict total mercury and methylmercury in forested headwater streams, Sleepers River, Vermont USA [J]. Hydrological Processes, 2022, 36(5): 14572.
[61] SARDANA A, COTTRELL B, SOULSBY D, et al. Dissolved organic matter processing and photoreactivity in a wastewater treatment constructed wetland [J]. Science of the Total Environment, 2019, 648: 923-934. doi: 10.1016/j.scitotenv.2018.08.138
[62] 阴永光, 李雁宾, 马旭, 等. 天然有机质介导的汞生物地球化学循环: 结合作用与分子转化 [J]. 化学进展, 2013, 25(12): 2169-2177. YIN Y G, LI Y B, MA X, et al. Role of natural organic matter in the biogeochemical cycle of mercury: Binding and molecular transformation [J]. Progress in Chemistry, 2013, 25(12): 2169-2177(in Chinese).
[63] GUGGENBERGER G, ZECH W. Composition and dynamics of dissolved carbohydrates and lignin-degradation products in two coniferous forests, N. E. Bavaria, Germany [J]. Soil Biology and Biochemistry, 1994, 26(1): 19-27. doi: 10.1016/0038-0717(94)90191-0
[64] ALEKSANDRA B, PATRYK O, RYSZARD D. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil [J]. Environmental geochemistry and health, 2019, 41(4): 1663-1674. doi: 10.1007/s10653-017-0036-1
[65] HE Y, MEN B, YANG X F, et al. Relationship between heavy metals and dissolved organic matter released from sediment by bioturbation/bioirrigation [J]. Journal of Environmental Sciences, 2018, 75: 216-223.