[1] ZHANG F, ZHAO D X, CHI J. Impact of different environmental particles on degradation of dibutyl phthalate in coastal sediments with and without Cylindrotheca closterium [J]. Environmental Pollution, 2020, 261: 114228. doi: 10.1016/j.envpol.2020.114228
[2] YU Y M, MO W Y, LUUKKONEN T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics - A review [J]. The Science of the Total Environment, 2021, 797: 149140. doi: 10.1016/j.scitotenv.2021.149140
[3] FU H Y, WEI C H, QU X L, et al. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications [J]. Environmental Pollution, 2018, 232: 402-410. doi: 10.1016/j.envpol.2017.09.053
[4] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122
[5] ZHANG F, WANG Z, WANG S, et al. Aquatic behavior and toxicity of polystyrene nanoplastic particles with different functional groups: Complex roles of pH, dissolved organic carbon and divalent cations [J]. Chemosphere, 2019, 228: 195-203. doi: 10.1016/j.chemosphere.2019.04.115
[6] ABDURAHMAN A, CUI K Y, WU J, et al. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis [J]. Ecotoxicology and Environmental Safety, 2020, 198: 110658. doi: 10.1016/j.ecoenv.2020.110658
[7] CHEN W, OUYANG Z Y, QIAN C, et al. Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight [J]. Environmental Pollution, 2018, 233: 1-7. doi: 10.1016/j.envpol.2017.10.027
[8] HYUNG H, KIM J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters [J]. Environmental Science & Technology, 2008, 42(12): 4416-4421.
[9] SINGH S, KUMAR V, CHAUHAN A, et al. Toxicity, degradation and analysis of the herbicide atrazine [J]. Environmental Chemistry Letters, 2018, 16(1): 211-237. doi: 10.1007/s10311-017-0665-8
[10] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater [J]. Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100
[11] ANDRADY A L. The plastic in microplastics: A review [J]. Marine Pollution Bulletin, 2017, 119(1): 12-22. doi: 10.1016/j.marpolbul.2017.01.082
[12] ZHAO L F, RONG L L, XU J P, et al. Sorption of five organic compounds by polar and nonpolar microplastics [J]. Chemosphere, 2020, 257: 127206. doi: 10.1016/j.chemosphere.2020.127206
[13] LIU P, ZHAN X, WU X W, et al. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks [J]. Chemosphere, 2020, 242: 125193. doi: 10.1016/j.chemosphere.2019.125193
[14] LIANG L, LUO L, ZHANG S Z. Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 384(1/2/3): 126-130.
[15] ENGEL M, CHEFETZ B. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry [J]. Environmental Pollution, 2016, 213: 90-98. doi: 10.1016/j.envpol.2016.02.009
[16] WANG F, YAO J, CHEN H L, et al. Sorption of humic acid to functionalized multi-walled carbon nanotubes [J]. Environmental Pollution, 2013, 180: 1-6. doi: 10.1016/j.envpol.2013.04.035
[17] LIN D H, LI T T, YANG K, et al. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: Effects of HA, MWNT and solution properties [J]. Journal of Hazardous Materials, 2012, 241/242: 404-410. doi: 10.1016/j.jhazmat.2012.09.060
[18] CAO H M, ZHANG P, JIA W L, et al. Adsorption of phenanthrene onto magnetic multi-walled carbon nanotubes (MMWCNTs) influenced by various fractions of humic acid from a single soil [J]. Chemosphere, 2021, 277: 130259. doi: 10.1016/j.chemosphere.2021.130259
[19] XIAO F, PIGNATELLO J J. Interactions of triazine herbicides with biochar: Steric and electronic effects [J]. Water Research, 2015, 80: 179-188. doi: 10.1016/j.watres.2015.04.040