[1] |
SAXENA P, HILDEMANN L M. Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds [J]. Journal of Atmospheric Chemistry, 1996, 24(1): 57-109. doi: 10.1007/BF00053823
|
[2] |
PUTAUD J P, RAES F, van DINGENEN R, et al. A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe [J]. Atmospheric Environment, 2004, 38(16): 2579-2595. doi: 10.1016/j.atmosenv.2004.01.041
|
[3] |
谢绍东, 于淼, 姜明. 有机气溶胶的来源与形成研究现状 [J]. 环境科学学报, 2006, 26(12): 1933-1939. doi: 10.13671/j.hjkxxb.2006.12.001
XIE S D, YU M, JIANG M. Research progress in source and formation of organic aerosol [J]. Acta Scientiae Circumstantiae, 2006, 26(12): 1933-1939(in Chinese). doi: 10.13671/j.hjkxxb.2006.12.001
|
[4] |
FU P Q, KAWAMURA K, CHEN J, et al. Secondary production of organic aerosols from biogenic VOCs over Mt. Fuji, Japan [J]. Environmental Science & Technology, 2014, 48(15): 8491-8497.
|
[5] |
何凌燕, 胡敏, 黄晓锋, 张远航. 北京大气气溶胶PM2.5中的有机示踪化合物 [J]. 环境科学学报, 2005, 25(1): 23-29.
HE L Y, HU M, HUANG X F, et al. Determination of organic molecular tracers in PM2.5 in the atmosphere of Beijing [J]. Acta Scientiae Circumstantiae, 2005, 25(1): 23-29(in Chinese).
|
[6] |
SIMONEIT B R T. Organic matter of the troposphere—III. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States [J]. Atmospheric Environment, 1984, 18(1): 51-67. doi: 10.1016/0004-6981(84)90228-2
|
[7] |
FRASER M P, LAKSHMANAN K. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols [J]. Environmental Science & Technology, 2000, 34(21): 4560-4564.
|
[8] |
SIMONEIT B R T, ELIAS V O, KOBAYASHI M, et al. Sugars: Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter [J]. Environmental Science & Technology, 2004, 38(22): 5939-5949.
|
[9] |
RUTTER A P, SNYDER D C, STONE E A, et al. Preliminary assessment of the anthropogenic and biogenic contributions to secondary organic aerosols at two industrial cities in the upper Midwest [J]. Atmospheric Environment, 2014, 84: 307-313. doi: 10.1016/j.atmosenv.2013.11.014
|
[10] |
STONE E A, ZHOU J B, SNYDER D C, et al. A comparison of summertime secondary organic aerosol source contributions at contrasting urban locations [J]. Environmental Science & Technology, 2009, 43(10): 3448-3454.
|
[11] |
FENG J L, LI M, ZHANG P, et al. Investigation of the sources and seasonal variations of secondary organic aerosols in PM2.5 in Shanghai with organic tracers [J]. Atmospheric Environment, 2013, 79: 614-622. doi: 10.1016/j.atmosenv.2013.07.022
|
[12] |
WEITKAMP E A, LAMBE A T, DONAHUE N M, et al. Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust [J]. Environmental Science & Technology, 2008, 42(21): 7950-7956.
|
[13] |
LAI C Y, LIU Y C, MA J Z, et al. Heterogeneous kinetics of cis-pinonic acid with hydroxyl radical under different environmental conditions [J]. The Journal of Physical Chemistry A, 2015, 119(25): 6583-6593. doi: 10.1021/acs.jpca.5b01321
|
[14] |
LAMBE A T, MIRACOLO M A, HENNIGAN C J, et al. Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals [J]. Environmental Science & Technology, 2009, 43(23): 8794-8800.
|
[15] |
SANG X, GENSCH I, KAMMER B, et al. Chemical stability of levoglucosan: An isotopic perspective [J]. Geophysical Research Letters, 2016, 43(10): 5419-5424. doi: 10.1002/2016GL069179
|
[16] |
SIMONEIT B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0
|
[17] |
王鑫彤, 鞠法帅, 韩德文, 等. 大气颗粒物中生物质燃烧示踪化合物的研究进展 [J]. 环境化学, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
WANG X T, JU F S, HAN D W, et al. Research progress on the organic tracers of biomass burning in atmospheric aerosols [J]. Environmental Chemistry, 2015, 34(10): 1885-1894(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
|
[18] |
SANG X F, GENSCH I, LAUMER W, et al. Stable carbon isotope ratio analysis of anhydrosugars in biomass burning aerosol particles from source samples [J]. Environmental Science & Technology, 2012, 46(6): 3312-3318.
|
[19] |
HENNIGAN C J, SULLIVAN A P, COLLETT J L J, et al. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals [J]. Geophysical Research Letters, 2010, 37(9): L09806.
|
[20] |
SLADE J H, KNOPF D A. Heterogeneous OH oxidation of biomass burning organic aerosol surrogate compounds: Assessment of volatilisation products and the role of OH concentration on the reactive uptake kinetics [J]. Physical Chemistry Chemical Physics, 2013, 15(16): 5898-5915. doi: 10.1039/c3cp44695f
|
[21] |
HOFFMANN D, TILGNER A, IINUMA Y, et al. Atmospheric stability of levoglucosan: A detailed laboratory and modeling study [J]. Environmental Science & Technology, 2010, 44(2): 694-699.
|
[22] |
柏静. 典型生物质燃烧标识物及生物质排放的VOCs在大气中的降解机理及动力学研究[D]. 济南: 山东大学, 2013.
BAI J. Degradation mechanism and kinetics study of typical biomass combustion molecular marker and biomass emissions of VOCs in the atmosphere[D]. Jinan: Shandong University, 2013(in Chinese).
|
[23] |
LAI C Y, LIU Y C, MA J Z, et al. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions [J]. Atmospheric Environment, 2014, 91: 32-39. doi: 10.1016/j.atmosenv.2014.03.054
|
[24] |
王宁. 大气中典型VOCs降解过程均相反应机理和异相成核机理的研究[D]. 济南: 山东大学, 2017.
WANG N. The mechanism of homogeneous reaction and heterogeneous nucleation in VOCs degradation process in the atmosphere[D]. Jinan: Shandong University, 2017(in Chinese).
|
[25] |
LI Y M, FU T M, YU J Z, et al. Impacts of chemical degradation on the global budget of atmospheric levoglucosan and its use As a biomass burning tracer [J]. Environmental Science & Technology, 2021, 55(8): 5525-5536.
|
[26] |
SIMONEIT B R T, ROGGE W F, MAZUREK M A, et al. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion [J]. Environmental Science & Technology, 1993, 27(12): 2533-2541.
|
[27] |
STANDLEY L J, SIMONEIT B R T. Resin diterpenoids as tracers for biomass combustion aerosols [J]. Journal of Atmospheric Chemistry, 1994, 18(1): 1-15. doi: 10.1007/BF00694371
|
[28] |
SCHMIDL C, MARR I L, CASEIRO A, et al. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions [J]. Atmospheric Environment, 2008, 42(1): 126-141. doi: 10.1016/j.atmosenv.2007.09.028
|
[29] |
KNOPF D A, FORRESTER S M, SLADE J H. Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O3, NO2, N2O5, and NO3 [J]. Physical Chemistry Chemical Physics, 2011, 13(47): 21050-21062. doi: 10.1039/c1cp22478f
|
[30] |
BAI J, SUN X M, ZHANG C X, et al. The atmospheric degradation reaction of dehydroabietic acid (DHAA) initiated by OH radicals and O3 [J]. Chemosphere, 2013, 92(8): 933-940. doi: 10.1016/j.chemosphere.2013.03.004
|
[31] |
LAI C Y, LIU Y C, MA J Z, et al. Laboratory study on OH-initiated degradation kinetics of dehydroabietic acid [J]. Physical Chemistry Chemical Physics, 2015, 17(16): 10953-10962. doi: 10.1039/C5CP00268K
|
[32] |
LIU C G, ZENG C H. Heterogeneous kinetics of methoxyphenols in the OH-initiated reactions under different experimental conditions [J]. Chemosphere, 2018, 209: 560-567. doi: 10.1016/j.chemosphere.2018.06.131
|
[33] |
LAURAGUAIS A, COEUR-TOURNEUR C, CASSEZ A, et al. Rate constant and secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals with syringol (2, 6-dimethoxyphenol) [J]. Atmospheric Environment, 2012, 55: 43-48. doi: 10.1016/j.atmosenv.2012.02.027
|
[34] |
LIU C G, HE Y C, CHEN X E. Kinetic study on the heterogeneous degradation of coniferyl alcohol by OH radicals [J]. Chemosphere, 2020, 241: 125088. doi: 10.1016/j.chemosphere.2019.125088
|
[35] |
COEUR-TOURNEUR C, CASSEZ A, WENGER J C. Rate coefficients for the gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and related compounds [J]. The Journal of Physical Chemistry A, 2010, 114(43): 11645-11650. doi: 10.1021/jp1071023
|
[36] |
ZHANG H X, YANG B, WANG Y F, et al. Gas-phase reactions of methoxyphenols with NO3 radicals: Kinetics, products, and mechanisms [J]. The Journal of Physical Chemistry. A, 2016, 120(8): 1213-1221. doi: 10.1021/acs.jpca.5b10406
|
[37] |
LAURAGUAIS A, EL ZEIN A, COEUR C, et al. Kinetic study of the gas-phase reactions of nitrate radicals with methoxyphenol compounds: Experimental and theoretical approaches [J]. The Journal of Physical Chemistry A, 2016, 120(17): 2691-2699. doi: 10.1021/acs.jpca.6b02729
|
[38] |
YANG B, ZHANG H X, WANG Y F, et al. Experimental and theoretical studies on gas-phase reactions of NO3 radicals with three methoxyphenols: Guaiacol, creosol, and syringol [J]. Atmospheric Environment, 2016, 125: 243-251. doi: 10.1016/j.atmosenv.2015.11.028
|
[39] |
NET S, ALVAREZ E G, GLIGOROVSKI S, et al. Heterogeneous reactions of ozone with methoxyphenols, in presence and absence of light [J]. Atmospheric Environment, 2011, 45(18): 3007-3014. doi: 10.1016/j.atmosenv.2011.03.026
|
[40] |
NET S, GOMEZ ALVAREZ E, BALZER N, et al. Photolysis and heterogeneous reaction of coniferyl aldehyde adsorbed on silica particles with ozone [J]. Chemphyschem, 2010, 11(18): 4019-4027. doi: 10.1002/cphc.201000446
|
[41] |
O'NEILL E M, KAWAM A Z, van RY D A, et al. Ozonolysis of surface-adsorbed methoxyphenols: Kinetics of aromatic ring cleavage vs. alkene side-chain oxidation [J]. Atmospheric Chemistry and Physics, 2014, 14(1): 47-60. doi: 10.5194/acp-14-47-2014
|
[42] |
LAURAGUAIS A, BEJAN I, BARNES I, et al. Rate coefficients for the gas-phase reaction of chlorine atoms with a series of methoxylated aromatic compounds [J]. The Journal of Physical Chemistry A, 2014, 118(10): 1777-1784. doi: 10.1021/jp4114877
|
[43] |
SCHAUER J J, ROGGE W F, HILDEMANN L M, et al. Source apportionment of airborne particulate matter using organic compounds as tracers [J]. Atmospheric Environment, 1996, 30(22): 3837-3855. doi: 10.1016/1352-2310(96)00085-4
|
[44] |
SCHAUER J J, CASS G R. Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers [J]. Environmental Science & Technology, 2000, 34(9): 1821-1832.
|
[45] |
ROGGE W F, HILDEMANN L M, MAZUREK M A, et al. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations [J]. Environmental Science & Technology, 1991, 25(6): 1112-1125.
|
[46] |
DOCHERTY K S, ZIEMANN P J. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation [J]. The Journal of Physical Chemistry. A, 2006, 110(10): 3567-3577. doi: 10.1021/jp0582383
|
[47] |
HEARN J D, LOVETT A J, SMITH G D. Ozonolysis of oleic acid particles: Evidence for a surface reaction and secondary reactions involving Criegee intermediates [J]. Physical Chemistry Chemical Physics, 2005, 7(3): 501-511. doi: 10.1039/b414472d
|
[48] |
HEARN J D, SMITH G D. Kinetics and product studies for ozonolysis reactions of organic particles using aerosol CIMS [J]. The Journal of Physical Chemistry A, 2004, 108(45): 10019-10029. doi: 10.1021/jp0404145
|
[49] |
HE X, LENG C B, PANG S F, et al. Kinetics study of heterogeneous reactions of ozone with unsaturated fatty acid single droplets using micro-FTIR spectroscopy [J]. RSC Advances, 2017, 7(6): 3204-3213. doi: 10.1039/C6RA25255A
|
[50] |
MORRIS J W, DAVIDOVITS P, JAYNE J T, et al. Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique [J]. Geophysical Research Letters, 2002, 29(9): 71-1.
|
[51] |
GALLIMORE P J, GRIFFITHS P T, POPE F D, et al. Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition [J]. Journal of Geophysical Research:Atmospheres, 2017, 122(8): 4364-4377. doi: 10.1002/2016JD026221
|
[52] |
SMITH G D, WOODS E, DEFOREST C L, et al. Reactive uptake of ozone by oleic acid aerosol particles: Application of single-particle mass spectrometry to heterogeneous reaction kinetics [J]. The Journal of Physical Chemistry A, 2002, 106(35): 8085-8095. doi: 10.1021/jp020527t
|
[53] |
ROBINSON A L, DONAHUE N M, ROGGE W F. Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context [J]. Journal of Geophysical Research, 2006, 111(D3): D03302.
|
[54] |
HUNG H M, ARIYA P. Oxidation of oleic acid and oleic acid/sodium chloride(aq) mixture droplets with ozone: Changes of hygroscopicity and role of secondary reactions [J]. The Journal of Physical Chemistry. A, 2007, 111(4): 620-632. doi: 10.1021/jp0654563
|
[55] |
KATRIB Y, BISKOS G, BUSECK P R, et al. Ozonolysis of mixed oleic-acid/stearic-acid particles: Reaction kinetics and chemical morphology [J]. The Journal of Physical Chemistry. A, 2005, 109(48): 10910-10919. doi: 10.1021/jp054714d
|
[56] |
ZIEMANN P J. Aerosol products, mechanisms, and kinetics of heterogeneous reactions of ozone with oleic acid in pure and mixed particles [J]. Faraday Discussions, 2005, 130(0): 469-490.
|
[57] |
HUFF HARTZ K E, WEITKAMP E A, SAGE A M, et al. Laboratory measurements of the oxidation kinetics of organic aerosol mixtures using a relative rate constants approach [J]. Journal of Geophysical Research, 2007, 112(D4): D04204.
|
[58] |
DREYFUS M A, TOLOCKA M P, DODDS S M, et al. Cholesterol ozonolysis: Kinetics, mechanism, and oligomer products [J]. The Journal of Physical Chemistry. A, 2005, 109(28): 6242-6248. doi: 10.1021/jp050606f
|
[59] |
赵红帅, 常淼, 赵起越, 等. 有机气溶胶中甾醇类化合物的研究进展 [J]. 分析试验室, 2016, 35(1): 121-124. doi: 10.13595/j.cnki.issn1000-0720.2016.0028
ZHAO H S, CHANG M, ZHAO Q Y, et al. Research progress of sterols compounds in organic aerosol [J]. Chinese Journal of Analysis Laboratory, 2016, 35(1): 121-124(in Chinese). doi: 10.13595/j.cnki.issn1000-0720.2016.0028
|
[60] |
袁杨森, 刘大锰, 车瑞俊, 等. 北京夏季大气颗粒物中有机污染源的生物标志物示踪 [J]. 中国科学院研究生院学报, 2007, 24(5): 601-611.
YUAN Y S, LIU D M, CHE R J, et al. Source tracing of biomarkers in the organic pollutants from atmospheric particulates in Beijing City during summer [J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(5): 601-611(in Chinese).
|
[61] |
CLAEYS M, GRAHAM B, VAS G, et al. Formation of secondary organic aerosols through photooxidation of isoprene [J]. Science, 2004, 303(5661): 1173-1176. doi: 10.1126/science.1092805
|
[62] |
CHEN Y Z, ZHANG Y, LAMBE A T, et al. Heterogeneous hydroxyl radical oxidation of isoprene epoxydiol-derived methyltetrol sulfates: Plausible formation mechanisms of previously unexplained organosulfates in ambient fine aerosols [J]. Environmental Science & Technology Letters, 2020, 7(7): 460-468.
|
[63] |
HU W W, PALM B, DAY D, et al. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) [J]. Atmospheric Chemistry and Physics, 2016, 16(18): 11563-11580. doi: 10.5194/acp-16-11563-2016
|
[64] |
XU R S, LAM H K, WILSON K R, et al. Effect of inorganic-to-organic mass ratio on the heterogeneous OH reaction rates of erythritol: Implications for atmospheric chemical stability of 2-methyltetrols [J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3879-3893. doi: 10.5194/acp-20-3879-2020
|
[65] |
KESSLER S H, SMITH J D, CHE D L, et al. Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan [J]. Environmental Science & Technology, 2010, 44(18): 7005-7010.
|
[66] |
黄亚娟. PM2.5中二次有机示踪物的臭氧非均相氧化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
HUANG Y J. Heterogeneous oxidation of secondary organic tracers in PM2.5 by ozone[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
|
[67] |
黄亚娟, 曹罡, 朱荣淑, 等. 异戊二烯和甲苯二次有机示踪物的臭氧非均相氧化 [J]. 环境科学, 2019, 40(3): 1163-1171. doi: 10.13227/j.hjkx.201803064
HUANG Y J, CAO G, ZHU R S, et al. Heterogeneous oxidation of secondary organic tracers of isoprene and toluene by ozone [J]. Environmental Science, 2019, 40(3): 1163-1171(in Chinese). doi: 10.13227/j.hjkx.201803064
|
[68] |
WANG R H, HUANG Y J, CAO G. Heterogeneous oxidation of isoprene SOA and toluene SOA tracers by ozone [J]. Chemosphere, 2020, 249: 126258. doi: 10.1016/j.chemosphere.2020.126258
|
[69] |
WANG R, HUANG Y, HU Q, et al. In-situ FTIR study of heterogeneous oxidation of SOA tracers by ozone [J]. Frontiers in Environmental Chemistry, 2021, 2: 732219. doi: 10.3389/fenvc.2021.732219
|
[70] |
胡倩. 异戊二烯SOA示踪物的非均相氧化研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
HU Q. Heterogeneous oxidation of isoprene SOA tracers[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
|
[71] |
王润华. 甲苯SOA示踪物的羟基自由基非均相氧化研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
WANG R H. Heterogeneous oxidation of toluene SOA tracers by hydroxyl radical[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
|