[1] |
RONG C, WANG T J, LUO Z B, et al. Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater [J]. Bioresource Technology, 2022, 354: 127167. doi: 10.1016/j.biortech.2022.127167
|
[2] |
许美兰, 李元高, 叶茜, 等. 常温下厌氧膜生物反应器处理生活污水研究 [J]. 中国给水排水, 2015, 31(13): 23-26. doi: 10.19853/j.zgjsps.1000-4602.2015.13.006
XU M L, LI Y G, YE Q, et al. Treatment of domestic sewage by anaerobic membrane bioreactor at ambient temperature [J]. China Water & Wastewater, 2015, 31(13): 23-26(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2015.13.006
|
[3] |
荆延龙, 李菲菲, 朱佳迪, 等. 室温下厌氧膜生物反应器处理生活污水的运行特性 [J]. 环境工程学报, 2017, 11(10): 5393-5399.
JING Y L, LI F F, ZHU J D, et al. Operating characteristics of anaerobic membrane bioreactor for domestic wastewater treatment under ambient temperature [J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5393-5399(in Chinese).
|
[4] |
LI Z Y, ZHAO Y J, GUAN Q, et al. Novel direct dual Z-scheme AgBr(Ag)/MIL-101(Cr)/CuFe2O4 for efficient conversion of nitrate to nitrogen [J]. Applied Surface Science, 2020, 508: 145225. doi: 10.1016/j.apsusc.2019.145225
|
[5] |
YANG X, QI X, MA G Q, et al. Novel Z-Scheme Ag/TiO2/AgMIL-101(Cr) as an efficient photocatalyst for nitrogen production from nitrate [J]. Applied Surface Science, 2019, 479: 1048-1056. doi: 10.1016/j.apsusc.2019.02.111
|
[6] |
YANG H, HU S, ZHAO H, et al. High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution [J]. Journal of Hazardous Materials, 2021, 416: 126046. doi: 10.1016/j.jhazmat.2021.126046
|
[7] |
李坚, 石先阳. CdS/CdMoO4空心微球复合材料的化学沉淀法制备及光催化性能 [J]. 环境化学, 2018, 37(10): 2283-2290. doi: 10.7524/j.issn.0254-6108.2017112006
LI J, SHI X Y. Photocatalytic properties of CdS/CdMoO4 hollow microsphere composites synthesized by chemical precipitation method [J]. Environmental Chemistry, 2018, 37(10): 2283-2290(in Chinese). doi: 10.7524/j.issn.0254-6108.2017112006
|
[8] |
ZENG D B, YU C L, FAN Q Z, et al. Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(Ⅵ) and organic pollutants [J]. Chemical Engineering Journal, 2020, 391: 123607. doi: 10.1016/j.cej.2019.123607
|
[9] |
郭桂全, 胡巧红, 王承林, 等. g-C3N4/RGO的制备、光催化降解性能及其降解机理 [J]. 环境化学, 2021, 40(3): 808-817. doi: 10.7524/j.issn.0254-6108.2019092605
GUO G Q, HU Q H, WANG C L, et al. Preparation, photocatalytic degradation performance and degradation mechanism of g-C3N4/RGO [J]. Environmental Chemistry, 2021, 40(3): 808-817(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092605
|
[10] |
陈紫盈, 孙洁, 罗雪文, 等. BiVO4晶面生长调控及其光催化氧化罗丹明B和还原Cr(Ⅵ)的性能 [J]. 环境化学, 2020, 39(8): 2129-2136. doi: 10.7524/j.issn.0254-6108.2019061101
CHEN Z Y, SUN J, LUO X W, et al. Growth regulation of BiVO4 crystal plane and photocatalytic oxidation of Rhodamine B and reduction of Cr(Ⅵ) [J]. Environmental Chemistry, 2020, 39(8): 2129-2136(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061101
|
[11] |
ROY S. Photocatalytic materials for reduction of nitroarenes and nitrates [J]. The Journal of Physical Chemistry C, 2020, 124(52): 28345-28358. doi: 10.1021/acs.jpcc.0c07363
|
[12] |
SHI H L, LI C H, WANG L, et al. Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity [J]. Journal of Hazardous Materials, 2022, 424: 127711. doi: 10.1016/j.jhazmat.2021.127711
|
[13] |
唐丽娜, 柳丽芬, 董晓艳, 等. 金属掺杂二氧化钛光催化还原硝酸氮 [J]. 环境科学, 2008, 29(9): 2536-2541. doi: 10.13227/j.hjkx.2008.09.003
TANG L N, LIU L F, DONG X Y, et al. Photocatalytic reduction of nitrate using metal-doped titania [J]. Environmental Science, 2008, 29(9): 2536-2541(in Chinese). doi: 10.13227/j.hjkx.2008.09.003
|
[14] |
SÁ J, AGÜERA C A, GROSS S, et al. Photocatalytic nitrate reduction over metal modified TiO2 [J]. Applied Catalysis B:Environmental, 2009, 85(3/4): 192-200.
|
[15] |
LIU G S, YOU S J, MA M, et al. Removal of nitrate by photocatalytic denitrification using nonlinear optical material [J]. Environmental Science & Technology, 2016, 50(20): 11218-11225.
|
[16] |
LI L Y, XU Z Y, LIU F L, et al. Photocatalytic nitrate reduction over Pt-Cu/TiO2 catalysts with benzene as hole scavenger [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2010, 212(2/3): 113-121.
|
[17] |
de BEM LUIZ D, ANDERSEN S L F, BERGER C, et al. Photocatalytic reduction of nitrate ions in water over metal-modified TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2012, 246: 36-44. doi: 10.1016/j.jphotochem.2012.07.011
|
[18] |
KOMINAMI H, FURUSHO A, MURAKAMI S Y, et al. Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium(IV) oxide particles in the presence of oxalic acid [J]. Catalysis Letters, 2001, 76: 31-34. doi: 10.1023/A:1016771908609
|
[19] |
KOMINAMI H, NAKASEKO T, SHIMADA Y, et al. Selective photocatalytic reduction of nitrate to nitrogen molecules in an aqueous suspension of metal-loaded titanium(IV) oxide particles [J]. Chemical Communications (Cambridge, England), 2005(23): 2933-2935. doi: 10.1039/b502909k
|
[20] |
ZHENG R, LI C H, HUANG K L, et al. TiO2/Ti3C2 intercalated with g-C3N4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N2 selectivity in aqueous solution [J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2518-2531. doi: 10.1039/D1QI00001B
|
[21] |
DUAN Z Y, ZHAO X J, WEI C W, et al. Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for CO2 conversion [J]. Applied Catalysis A:General, 2020, 594: 117459. doi: 10.1016/j.apcata.2020.117459
|
[22] |
WANG B X, AN W J, LIU L, et al. Novel Cu2S quantum dots coupled flower-like BiOBr for efficient photocatalytic hydrogen production under visible light [J]. RSC Advances, 2015, 5(5): 3224-3231. doi: 10.1039/C4RA12172D
|
[23] |
LONG Z Q, ZHANG G M, DU H B, et al. Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI) [J]. Journal of Hazardous Materials, 2021, 407: 124394. doi: 10.1016/j.jhazmat.2020.124394
|
[24] |
GANOSE A M, CUFF M, BUTLER K T, et al. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI [J]. Chemistry of Materials:a Publication of the American Chemical Society, 2016, 28(7): 1980-1984.
|
[25] |
ZHAO Z Y, DAI W W. Structural, electronic, and optical properties of Eu-doped BiOX (X = F, Cl, Br, I): A DFT+U study [J]. Inorganic Chemistry, 2014, 53(24): 13001-13011. doi: 10.1021/ic5021059
|
[26] |
CHEN P, LIU H J, CUI W, et al. Bi-based photocatalysts for light-driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges [J]. EcoMat, 2020, 2(3): e12047.
|
[27] |
LU L F, KONG L, JIANG Z, et al. Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr [J]. Catalysis Letters, 2012, 142(6): 771-778. doi: 10.1007/s10562-012-0824-2
|
[28] |
YAN T J, YAN X Y, GUO R R, et al. Ag/AgBr/BiOBr hollow hierarchical microspheres with enhanced activity and stability for RhB degradation under visible light irradiation [J]. Catalysis Communications, 2013, 42: 30-34. doi: 10.1016/j.catcom.2013.07.022
|
[29] |
杨利伟, 刘丽君, 夏训峰, 等. pg-C3N4/BiOBr/Ag复合材料的制备及其光催化降解磺胺甲噁唑 [J]. 环境科学, 2021, 42(6): 2896-2907.
YANG L W, LIU L J, XIA X F, et al. Preparation of pg-C3N4/BiOBr/Ag composite and photocatalytic degradation of sulfamethoxazole [J]. Environmental Science, 2021, 42(6): 2896-2907(in Chinese).
|
[30] |
YU C L, FAN C F, MENG X J, et al. A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes [J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103(1): 141-151. doi: 10.1007/s11144-011-0291-6
|
[31] |
CUSHING S K, LI J T, MENG F K, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor [J]. Journal of the American Chemical Society, 2012, 134(36): 15033-15041. doi: 10.1021/ja305603t
|
[32] |
ZHU W Y, LI Z, ZHOU Y, et al. Deposition of silver nanoparticles onto two dimensional BiOCl nanodiscs for enhanced visible light photocatalytic and biocidal activities [J]. RSC Advances, 2016, 6(69): 64911-64920. doi: 10.1039/C6RA09964E
|
[33] |
GUPTA G, KAUR A, SINHA A S K, et al. Photocatalytic degradation of levofloxacin in aqueous phase using Ag/AgBr/BiOBr microplates under visible light [J]. Materials Research Bulletin, 2017, 88: 148-155. doi: 10.1016/j.materresbull.2016.12.016
|
[34] |
LIU Z S, BI Y H, ZHAO Y L, et al. Synthesis and photocatalytic property of BiOBr/palygorskite composites [J]. Materials Research Bulletin, 2014, 49: 167-171. doi: 10.1016/j.materresbull.2013.08.068
|
[35] |
DI J, XIA J X, YIN S, et al. A g-C3N4/BiOBr visible-light-driven composite: Synthesis via a reactable ionic liquid and improved photocatalytic activity [J]. RSC Advances, 2013, 3(42): 19624. doi: 10.1039/c3ra42269k
|
[36] |
HE F, HE Z J, XIE J L, et al. IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system [J]. American Journal of Analytical Chemistry, 2014, 5(16): 1142-1150. doi: 10.4236/ajac.2014.516121
|
[37] |
PHURUANGRAT A, DUMRONGROJTHANATH P, EKTHAMMATHAT N, et al. Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi2WO6 nanoplates [J]. Journal of Nanomaterials, 2014: 138561.
|
[38] |
LIU T T, ZHAO Y, GAO L J, et al. Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage [J]. Scientific Reports, 2015, 5: 9307. doi: 10.1038/srep09307
|
[39] |
WEI X X, CHEN C M, GUO S Q, et al. Advanced visible-light-driven photocatalyst BiOBr-TiO2-graphene composite with graphene as a nano-filler [J]. Journal of Materials Chemistry A, 2014, 2(13): 4667. doi: 10.1039/c3ta14349j
|
[40] |
XU Y G, XU H, YAN J, et al. A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties [J]. Physical Chemistry Chemical Physics:PCCP, 2013, 15(16): 5821-5830. doi: 10.1039/c3cp44104k
|
[41] |
BIJANZAD K, TADJARODI A, AKHAVAN O, et al. Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates [J]. Research on Chemical Intermediates, 2016, 42(3): 2429-2447. doi: 10.1007/s11164-015-2159-2
|
[42] |
GUO Y, ZHANG J, ZHOU D D, et al. Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation [J]. Journal of Molecular Liquids, 2018, 262: 194-203. doi: 10.1016/j.molliq.2018.04.091
|
[43] |
VAIANO V, MATARANGOLO M, MURCIA J J, et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag [J]. Applied Catalysis B:Environmental, 2018, 225: 197-206. doi: 10.1016/j.apcatb.2017.11.075
|
[44] |
WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light [J]. Angewandte Chemie, 2008, 120(41): 8049-8051. doi: 10.1002/ange.200802483
|
[45] |
ZUAREZ-CHAMBA M, RAJENDRAN S, HERRERA-ROBLEDO M, et al. Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity [J]. Environmental Research, 2022, 209: 112834. doi: 10.1016/j.envres.2022.112834
|
[46] |
JAFFARI Z H, LAM S M, SIN J C, et al. Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination [J]. Separation and Purification Technology, 2020, 236: 116195. doi: 10.1016/j.seppur.2019.116195
|
[47] |
ZHENG R, LI C H, HUANG K L, et al. In situ synthesis of N-doped TiO2 on Ti3C2 MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N2 [J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1195-1207. doi: 10.1039/D1QI01614H
|
[48] |
ZHANG D F, WANG B Q, GONG X B, et al. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation [J]. Chemical Engineering Journal, 2019, 359: 1195-1204. doi: 10.1016/j.cej.2018.11.058
|