[1] |
ZHANG Y, HAN P, LIU H, et al. Effect of steam explosion on physicochemical properties of waste activated sludge and the performance of anaerobic digestion[J]. Water Science and Technology, 2018, 77(11): 2687-2698. doi: 10.2166/wst.2018.227
|
[2] |
CHOI J M, HAN S K, LEE C Y. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment[J]. Bioresource Technology, 2018, 259: 207-213. doi: 10.1016/j.biortech.2018.02.123
|
[3] |
KAVITHA S, RAJESH BANU J, IVINSHAJU C D, et al. Fenton mediated ultrasonic disintegration of sludge biomass: Biodegradability studies, energetic assessment, and its economic viability[J]. Bioresource Technology, 2016, 221: 1-8. doi: 10.1016/j.biortech.2016.09.012
|
[4] |
CAO S B, YAN W W, YU L, et al. Challenges of THP-AD centrate treatment using partial nitritation-anammox (PN/A)-inhibition, biomass washout, low alkalinity, recalcitrant and more[J]. Water Research, 2021, 203: 117555. doi: 10.1016/j.watres.2021.117555
|
[5] |
HUANG F, LIU H B, WEN J X, et al. Underestimated humic acids release and influence on anaerobic digestion during sludge thermal hydrolysis[J]. Water Research, 2021, 201: 117310. doi: 10.1016/j.watres.2021.117310
|
[6] |
韩鹏, 刘和, 丁春华, 等. 蒸汽爆破对城市污泥预处理和厌氧发酵产酸的影响[J]. 中国环境科学, 2017, 37(1): 238-244. doi: 10.3969/j.issn.1000-6923.2017.01.030
|
[7] |
刘越, 尹小波, 李强, 等. 蒸汽爆破对脱水污泥溶解性和厌氧消化性能的影响[J]. 环境工程学报, 2014, 8(12): 5469-5474.
|
[8] |
何晨, 何丁, 陈春茂, 等. 傅里叶变换离子回旋共振质谱在溶解性有机质组成分析中的应用[J]. 中国科学:地球科学, 2022, 52(12): 2323-2341.
|
[9] |
HAO S L, REN S, ZHOU N, et al. Molecular composition of hydrothermal liquefaction wastewater from sewage sludge and its transformation during anaerobic digestion[J]. Journal of Hazardous Materials, 2020, 383: 121163. doi: 10.1016/j.jhazmat.2019.121163
|
[10] |
CHE J G, BAI Y D, LI X, et al. Linking microbial community structure with molecular composition of dissolved organic matter during an industrial-scale composting[J]. Journal of Hazardous Materials, 2021, 405: 124281. doi: 10.1016/j.jhazmat.2020.124281
|
[11] |
FROLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology Biotechnology, 1995, 43(4): 755-761. doi: 10.1007/BF00164784
|
[12] |
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017
|
[13] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
[14] |
YUAN Z W, HE C, SHI Q, et al. Molecular insights into the transformation of dissolved organic matter in landfill leachate concentrate during biodegradation and coagulation processes using ESI FT-ICR MS[J]. Environmental Science & Technology, 2017, 51(14): 8110-8118.
|
[15] |
YUAN R X, SHEN Y W, ZHU N W, et al. Pretreatment-promoted sludge fermentation liquor improves biological nitrogen removal: Molecular insight into the role of dissolved organic matter[J]. Bioresource Technology, 2019, 293: 122082. doi: 10.1016/j.biortech.2019.122082
|
[16] |
牛雨彤, 刘吉宝, 马爽, 等. 零价铁和微波预处理组合强化污泥厌氧消化[J]. 环境科学, 2019, 40(3): 1431-1438. doi: 10.13227/j.hjkx.201806079
|
[17] |
ZHANG D, FENG Y M, HUANG H B, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138: 105629. doi: 10.1016/j.envint.2020.105629
|
[18] |
DWYER J, STARRENBURG D, TAIT S, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability[J]. Water Research, 2008, 42(18): 4699-4709. doi: 10.1016/j.watres.2008.08.019
|
[19] |
姚璐璐, 涂响, 于会彬, 等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416.
|
[20] |
姚萌, 罗红元, 谢小青, 等. 城市污水厂活性污泥胞外聚合物的三维荧光特性分析[J]. 中国环境科学, 2012, 32(1): 94-99. doi: 10.3969/j.issn.1000-6923.2012.01.015
|
[21] |
欧阳二明, 王伟. 污泥热水解过程中有机物分子量和荧光特征变化规律[J]. 中国环境科学, 2008, 28(12): 1062-1067. doi: 10.3321/j.issn:1000-6923.2008.12.002
|
[22] |
FERNANDES T V, VAN LIER J B, ZEEMAN G. Humic acid-like and fulvic acid-like inhibition on the hydrolysis of cellulose and tributyrin[J]. Bioenergy Research, 2015, 8(2): 821-831. doi: 10.1007/s12155-014-9564-z
|
[23] |
李倩倩, 郭亮, 赵阳国, 等. 热处理温度对污泥水解效果的影响及其三维荧光光谱特征[J]. 中国海洋大学学报(自然科学版), 2016, 46(9): 102-106. doi: 10.16441/j.cnki.hdxb.20150406
|
[24] |
MA S J, MA H J, HU H D, et al. Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion: Characteristics of dissolved organic matter and the key microorganisms[J]. Water Research, 2019, 148: 359-367. doi: 10.1016/j.watres.2018.10.058
|
[25] |
SHAKERI YEKTA S, GONSIOR M, SCHMITT-KOPPLIN P, et al. Characterization of dissolved organic matter in full scale continuous stirred tank biogas reactors using ultrahigh resolution mass spectrometry: A qualitative overview[J]. Environmental Science & Technology, 2012, 46(22): 12711-12719.
|
[26] |
LU D, XIAO K K, CHEN Y, et al. Transformation of dissolved organic matters produced from alkaline-ultrasonic sludge pretreatment in anaerobic digestion: From macro to micro[J]. Water Research, 2018, 142: 138-146. doi: 10.1016/j.watres.2018.05.044
|
[27] |
XIAO K K, YU Z C, PEI K Y, et al. Anaerobic digestion of sludge by different pretreatments: Changes of amino acids and microbial community[J]. Frontiers of Environmental Science & Engineering, 2022, 16(2): 109-123.
|
[28] |
SHAKERI YEKTA S, ELREEDY A, LIU T, et al. Influence of cysteine, serine, sulfate, and sulfide on anaerobic conversion of unsaturated long-chain fatty acid, oleate, to methane[J]. Science of the Total Environment, 2022, 817: 152967. doi: 10.1016/j.scitotenv.2022.152967
|
[29] |
CHEN H H, HAO S L, CHEN Z, et al. Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights[J]. Water Research, 2020, 168: 115199. doi: 10.1016/j.watres.2019.115199
|