[1] |
郑伟波, 郑卉, 余敏露. 气浮+厌氧折流板反应器+A/O处理屠宰废水工程[J]. 水处理技术, 2021, 47(5): 137-140.
|
[2] |
KANAFIN Y N. , MAKHATOVA A, MEIRAMKULOVA K, et al. Treatment of a poultry slaughterhouse wastewater using advanced oxidation processes[J]. Journal of Water Process Engineering, 2022, 47.
|
[3] |
程永伟, 孙春波, 武彦生, 等. 水解酸化+生物接触氧化法处理屠宰厂废水[J]. 中国给水排水, 2017, 33(12): 116-118. doi: 10.19853/j.zgjsps.1000-4602.2017.12.027
|
[4] |
白王军, 倪军. 固液分离/涡凹气浮/水解酸化/接触氧化处理屠宰废水[J]. 中国给水排水, 2020, 36(4): 106-109. doi: 10.19853/j.zgjsps.1000-4602.2020.04.021
|
[5] |
周明俊, 于鹏飞, 傅金祥, 等. 混凝气浮-UASB-SBR耦合工艺处理屠宰废水[J]. 水处理技术, 2016, 42(3): 116-120.
|
[6] |
李桂荣, 王立军, 杜春山, 等. UCT工艺处理低C/N值城市污水的试验研究[J]. 中国给水排水, 2012, 28(9): 101-104. doi: 10.3969/j.issn.1000-4602.2012.09.026
|
[7] |
戴捷, 马玉宝, 陈丽雯, 等. 厌氧水解-二段生物接触氧化处理生活污水试验研究[J]. 水处理技术, 2013, 39(4): 90-92. doi: 10.3969/j.issn.1000-3770.2013.04.022
|
[8] |
朱开贞, 许新海. 改良UCT-A/MBR工艺启动特性研究[J]. 环境科学与技术, 2019, 42(8): 189-194.
|
[9] |
贾军峰, 吴俊奇, 王真杰, 等. 改良UCT工艺处理高氨氮生活污水的实验研究[J]. 应用化工, 2020, 49(3): 661-664. doi: 10.3969/j.issn.1671-3206.2020.03.029
|
[10] |
尤立, 刘平, 胡春明. 改良型UCT工艺在农村生活污水处理中的应用[J]. 环境工程学报, 2022, 16(2): 651-658. doi: 10.12030/j.cjee.202012075
|
[11] |
宋文哲, 林甲, 刘杰, 等. 缺氧混合液回流对改良UCT工艺影响研究[J]. 给水排水, 2022, 58(6): 55-61. doi: 10.13789/j.cnki.wwe1964.2021.09.02.0002
|
[12] |
张园, 罗固源, 许晓毅, 等. UCT工艺进水COD浓度与C/N对除磷效果的影响[J]. 环境科学, 2010, 31(8): 1846-1850. doi: 10.13227/j.hjkx.2010.08.011
|
[13] |
郭珊珊, 杨云龙. UCT工艺处理生活污水的启动运行[J]. 水处理技术, 2011, 37(10): 109-112.
|
[14] |
乔宏儒, 孙力平, 吴振华, 等. 倒置A~2/O工艺和UCT工艺脱氮除磷效能比较[J]. 水处理技术, 2015, 41(12): 118-121.
|
[15] |
林康理. 屠宰废水处理设施改造工程实例[J]. 广东化工, 2021, 48(7): 115-117. doi: 10.3969/j.issn.1007-1865.2021.07.045
|
[16] |
SUN M X, WU M, DAI J, et al. 3DEEM spectroscopy analysis to assess the EPS composition in HMBR systems[J]. Water Science and Technology, 2016, 72(11): 2708-2716.
|