[1] |
MIAO L, Yang G, TAO T, PENG Y. Recent advances in nitrogen removal from landfill leachate using biological treatments: A review[J]. Environmental Management, 2019, 235: 178-185.
|
[2] |
TENG C Y, ZHOU K G, PENG C H, et al. Characterization and treatment of landfill leachate: A review[J]. Water Research, 2021, 203: 117525. doi: 10.1016/j.watres.2021.117525
|
[3] |
陈媛媛, 孙琳, 陈建飞. 反渗透膜在垃圾渗滤液处理中的应用[J]. 工程技术研究, 2021, 6(11): 126-127. doi: 10.3969/j.issn.1671-3818.2021.11.059
|
[4] |
李丛林. 论膜技术在垃圾渗滤液处理中的应用[J]. 资源节约与环保, 2020, 11: 115-116. doi: 10.3969/j.issn.1673-2251.2020.05.099
|
[5] |
SHAO L M, DENG Y T, QIU J J, et al. DOM chemodiversity pierced performance of each tandem unit along a full-scale “MBR+NF” process for mature landfill leachate treatment[J]. Water Research, 2021, 195(17): 117000.
|
[6] |
AMARAL M C S, MORAVIA W G, LANGE L C, et al. Nanofiltration as post-treatment of MBR treating landfill leachate[J]. Desalination & Water Treatment Science & Engineering, 2015, 53: 1482-1491.
|
[7] |
LI H K and LIU H. Treatment and recovery methods for leachate concentrate from landfill and incineration: A state-of-the-art review[J]. Journal of Cleaner Production, 2021, 329: 129720. doi: 10.1016/j.jclepro.2021.129720
|
[8] |
KEYIKOGLUeyikoglu R, KARATAS O, REZANIA H, et al. A review on treatment of membrane concentrates generated from landfill leachate treatment processes[J]. Separation and Purification Technology, 2021, 259: 118182. doi: 10.1016/j.seppur.2020.118182
|
[9] |
CHEN L, LI F Q, HE F D, et al. Membrane distillation combined with electrocoagulation and electrooxidation for the treatment of landfill leachate concentrate[J]. Separation and Purification Technology, 2022, 291: 120936. doi: 10.1016/j.seppur.2022.120936
|
[10] |
LIU D, YUAN Y, WEI Y Q, et al. Removal of refractory organics and heavy metals in landfill leachate concentrate by peroxi-coagulation process[J]. Journal of Environmental Sciences, 2022, 116: 43-51. doi: 10.1016/j.jes.2021.07.006
|
[11] |
ZHANG H, JI Z H, ZENG Y X, et al. Solidification/stabilization of landfill leachate concentrate contaminants using solid alkali-activated geopolymers with a high liquid solid ratio and fixing rate[J]. Chemosphere, 2022, 288(2): 132495.
|
[12] |
GUVENC S Y. Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe2+/heat- activated persulfate oxidation processes[J]. Process Safety and Environmental Protection, 2019, 126: 7-17. doi: 10.1016/j.psep.2019.03.034
|
[13] |
BENYOUCEF F, MAKAN A, El GHMARI A, et al. Optimized evaporation technique for leachate treatment: small scale implementation[J]. Journal of Environmental Management, 2016, 170: 131-135.
|
[14] |
TALALAJ I A. Mineral and organic compounds in leachate from landfill with concentrate recirculation[J]. Environmental Science & Pollution Research, 2015, 22: 2622-2633.
|
[15] |
王子龙. 垃圾渗沥液纳滤浓缩液处理工艺路线探讨[J]. 福建建设科技, 2020, 4: 58-60. doi: 10.3969/j.issn.1006-3943.2020.04.017
|
[16] |
邱中平, 李明星, 刘洋, 等. 好氧生物反应器填埋场的渗滤液回灌量研究[J]. 西南交通大学学报, 2019, 54(1): 168-172.
|
[17] |
TALALAJ I A, BIEDKA P. Impact of concentrated leachate recirculation on effectiveness of leachate treatment by reverse osmosis[J]. Ecological Engineering, 2015, 85: 185-192. doi: 10.1016/j.ecoleng.2015.10.002
|
[18] |
吴子涵, 任旭, 肖玉, 等. 上海市某垃圾焚烧厂渗滤液膜浓缩液回喷焚烧后的固相物质转化特性[J]. 环境工程学报, 2019, 13(8): 1949-1958. doi: 10.12030/j.cjee.201812128
|
[19] |
REHMAN F, SAYED M, KHAN J A, et al. Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: A comparative study[J]. Journal of Hazardous Materials, 2018, 357: 506-514. doi: 10.1016/j.jhazmat.2018.06.012
|
[20] |
LIN K Y A, ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal. 2017, 313: 1320-1327.
|
[21] |
AO X, LIU W, SUN W, et al. Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: Kinetics, mechanism, and genotoxicity[J]. Chemical Engineering Journal, 2018, 345: 87-97. doi: 10.1016/j.cej.2018.03.133
|
[22] |
WALDEMER R H, TRATNYEK P G, JOHNSON R L, NURMI J T. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products[J]. Environmental Science & Technology, 2007, 41: 1010-1015.
|
[23] |
DE L A, HE X, DIONYSION D D, et al. Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate[J]. Chemical Engineering Journal, 2017, 318: 206-213. doi: 10.1016/j.cej.2016.06.066
|
[24] |
SU S, CAO C, ZHAO Y, DIONYSION D D. Efficient transformation and elimination of roxarsone and its metabolites by a new a-FeOOH@GCA activating persulfate system under UV irradiation with subsequent As(V) recovery[J]. Applied Catalysis B:Environmental, 2019, 245: 207-219. doi: 10.1016/j.apcatb.2018.12.050
|
[25] |
SONGLIN W, NING Z, SI W, QI Z, ZHI Y. Modeling the oxidation kinetics of sono-activated persulfate’s process on the degradation of humic acid[J]. Ultrasonics Sonochemistry, 2015, 23: 128-134. doi: 10.1016/j.ultsonch.2014.10.026
|
[26] |
ARELLANO M, SANROMAN M A, PAZOS M. Electro-assisted activation of peroxymonosulfate by iron-based minerals for the degradation of 1-butyl-1-methylpyrrolidinium chloride[J]. Separation & Purification Technology, 2019, 208: 34-41.
|
[27] |
DU X, ZHANG K, XIE B, ZHAO J, et al. Peroxymonosulfate-assisted electro-oxidation/ coagulation coupled with ceramic membrane for manganese and phosphorus removal in surface water[J]. Chemical Engineering Journal, 2019, 365: 334-343. doi: 10.1016/j.cej.2019.02.028
|
[28] |
LEE M, MERLE T, RENTSCH D, et al. Abatement of polychoro-1, 3-butadienes in aqueous solution by ozone, UV-photolysis, and advanced oxidation processes (O3/H2O2 and UV/H2O2)[J]. Environmental Science & Technology, 2017, 51(1): 497-505.
|
[29] |
CHEN L, CAI T, CHENG C, et al. Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study[J]. Chemical Engineering Journal, 2018, 351: 1137-1146. doi: 10.1016/j.cej.2018.06.107
|
[30] |
MOREIRAF C, BOAVENTURA R A R, BRILLASRILLAS E, et al. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B:Environment, 2017, 202: 217-261. doi: 10.1016/j.apcatb.2016.08.037
|
[31] |
ZHANG M, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670: 110-121. doi: 10.1016/j.scitotenv.2019.03.180
|
[32] |
魏复盛. 水和废水监测分析方法(第4版)[M]. 北京: 中国环境科学出版社, 2002.
|
[33] |
BRIDGEMAN J, BIEROZA M, BAKERAKER A. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment[J]. Reviews in Environmental Science & Biotechnology, 2011, 10: 277.
|
[34] |
KAVURMACI S S, BEKBOLET M. Specific UV-vis absorbance changes of humic acid in the presence of clay particles during photocatalytic oxidation[J]. Desalination & Water Treatment, 2014, 52: 1903-1910.
|
[35] |
KE W, LI W, GONG X J, LI Y, et al. Spectral study of dissolved organic matter in biosolid during the composting process using inorganic bulking agent: UV-vis, GPC, FTIR and EEM[J]. International Biodeterioration & Biodegradation, 2013, 85: 617-623.
|
[36] |
WIN M S, TIAN Z, ZHAO H, XIAO K, et al. Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): A review[J]. Journal of Environmental Science, 2018, 71: 13-31. doi: 10.1016/j.jes.2017.12.004
|
[37] |
SOOMRO G S, QU C, REN N, et al. Efficient removal of refractory organics in landfill leachate concentrates by electrocoagulation in tandem with simultaneous electro-oxidation and in-situ peroxone[J]. Environmental Research, 2020, 183: 109249. doi: 10.1016/j.envres.2020.109249
|
[38] |
LIU X, NOVAK J T, HE Z. Removal of landfill leachate ultraviolet quenching substances by electricity induced humic acid precipitation and electrooxidation in a membrane electrochemical reactor[J]. Science of Total Environment, 2019, 689: 571-579. doi: 10.1016/j.scitotenv.2019.06.329
|
[39] |
HE P J, XUE J F, SHAO L M, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J], Water Research, 2006, 40(7): 1465-1473.
|
[40] |
LONG Y Y, XU J, SHEN D S, et al. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation[J]. Chemosphere, 2017, 167: 512-519. doi: 10.1016/j.chemosphere.2016.10.016
|
[41] |
SONIA R G B, JORGE N, WAGNER J B. Origin of dissolved organic carbon studied by UV-vis spectroscopy[J]. Acta Hydrochim. Hydrobiol, 2003, 31(6): 513-518. doi: 10.1002/aheh.200300510
|
[42] |
林星杰, 杨慧芬, 宋存义. UV254在水质监测中应用的研究[J]. 能源与环境, 2006(10): 22-24.
|
[43] |
刘国强. 垃圾渗滤液中DOM 特性分析及去除性能研究[D]. 重庆: 重庆大学, 2007.
|
[44] |
MARTA F, GUSTAVO G, JOSE M. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts[J]. Organic Geochemistry, 2006, 27: 1949-1959.
|
[45] |
KANG K H, SHIN H S, PARK H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36(16): 4023-4032. doi: 10.1016/S0043-1354(02)00114-8
|
[46] |
HE P J, XUE J F, SHAO L M, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J]. Water Research, 2006, 40(7): 1465-1473. doi: 10.1016/j.watres.2006.01.048
|
[47] |
何小松, 席北斗, 魏自民, 等. 堆放垃圾渗滤液水溶性有机物的荧光特性[J]. 中国环境科学, 2010, 30(6): 752-757.
|
[48] |
ZHANG Q Q, TIAN B H, ZHANG X, et al. Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants[J]. Waste Management, 2013, 33(11): 2277-2286. doi: 10.1016/j.wasman.2013.07.021
|
[49] |
HUO S, BEIDOU X I, HAICHAN Y U, et al. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages[J]. Journal of Environmental Sciences, 2008, 20(4): 492-498. doi: 10.1016/S1001-0742(08)62085-9
|
[50] |
CHEN W M, HE C, ZHUO X C, et al. Comprehensive evaluation of dissolved organic matter molecular transformation in municipal solid waste incineration leachate[J]. Chemical Engineering Journal, 2020, 400: 126003-126010. doi: 10.1016/j.cej.2020.126003
|
[51] |
CHEN W M, WANG F, HE C, et al. Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate[J]. Journal of Hazardous Materials, 2020, 397: 122785. doi: 10.1016/j.jhazmat.2020.122785
|
[52] |
WANG F, GU Z P, HU Y S, et al. Split dosing of H2O2 for enhancing recalcitrant organics removal from landfill leachate in the Fe0/H2O2 process: Degradation efficiency and mechanism[J]. Separation and Purification Technology, 2021, 278: 119564. doi: 10.1016/j.seppur.2021.119564
|
[53] |
OHNO T, CHOROVER J, OMOIKE A, et al. Molecular weight and humification index as predictors of adsorption for plant and manure derived dissolved organic matter to Goethite[J]. European Journal of Soil Science, 2007, 58(1): 125-132. doi: 10.1111/j.1365-2389.2006.00817.x
|
[54] |
OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746.
|
[55] |
JOHNSON M S, COUTO E G, ABDO M, et al. Fluorescence index as an indicator of dissolved organic carbon quality in hydrologic flowpaths of forested tropical watersheds[J]. Biogeochemistry, 2011, 105(1/2/3): 149-157.
|