[1] ZHANG X, ZHANG Y, SHI P, et al. The deep challenge of nitrate pollution in river water of China[J]. Science of the Total Environment, 2021, 770: 144674. doi: 10.1016/j.scitotenv.2020.144674
[2] MANJUNATH S V, KUMAR M. Evaluation of single-component and multi-component adsorption of metronidazole, phosphate and nitrate on activated carbon from Prosopis juliflora[J]. Chemical Engineering Journal, 2018, 346: 525-534. doi: 10.1016/j.cej.2018.04.013
[3] MIN L, ZHONGSHENG Z, ZHE L, et al. Removal of nitrogen and phosphorus pollutants from water by FeCl3-impregnated biochar[J]. Ecological Engineering, 2020, 149: 105792. doi: 10.1016/j.ecoleng.2020.105792
[4] RAJTA A, BHATIA R, SETIA H, et al. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater[J]. Journal of Applied Microbiology, 2020, 128(5): 1261-1278. doi: 10.1111/jam.14476
[5] PARWIN R, KARAR P K. Phytoremediation of kitchen wastewater using Eichhornia crassipes[J]. Journal of Environmental Engineering, 2019, 145(6): 04019023. doi: 10.1061/(ASCE)EE.1943-7870.0001520
[6] PANG Y M, WANG J L. Various electron donors for biological nitrate removal: A review[J]. Science of the Total Environment, 2021, 794: 148699. doi: 10.1016/j.scitotenv.2021.148699
[7] 郑晓青, 韦安磊, 张一璇, 等. 铁锰氧化物/生物炭复合材料对水中硝酸根的吸附特性[J]. 环境科学, 2018, 39(3): 1220-1232.
[8] LAZARATOU C V, VAYENAS D V, PAPOULIS D. The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review[J]. Applied Clay Science, 2020, 185: 105377. doi: 10.1016/j.clay.2019.105377
[9] JASNA R S, GANDHIMATHI R, LAVANYA A, et al. An integrated electrochemical-adsorption system for removal of nitrate from water[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104387. doi: 10.1016/j.jece.2020.104387
[10] 丁红, 王艺洁, 武福平. 废铁屑-Ti(RuO2)三维电极高效处理高氮磷低C/N污水[J]. 环境工程学报, 2021, 15(3): 847-856.
[11] 闫东杰, 郭通, 玉亚, 等. 以TiO2为载体的锰铈系低温SCR脱硝催化剂抗硫抗水性能研究进展[J]. 环境化学, 2022, 41(1): 352-364.
[12] QIU H J, LIU L, MU Y P, et al. Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices[J]. Nano Research, 2015, 8(2): 321-339. doi: 10.1007/s12274-014-0589-6
[13] VILE G, ALBANI D, NACHTEGAAL M, et al. A stable single-site palladium catalyst for hydrogenations[J]. Angewandte Chemie International Edition, 2015, 54(38): 11265-11269. doi: 10.1002/anie.201505073
[14] YANG M, LIU J L, LEE S, et al. A common single-site Pt(II)-O(OH)x-species stabilized by sodium on “Active” and “Inert” supports catalyzes the water-gas shift reaction[J]. Journal of the American Chemical Society, 2015, 137(10): 3470-3473. doi: 10.1021/ja513292k
[15] LU C, LU X, YANG K, et al. Cu, Ni and multi-walled carbon-nanotube-modified graphite felt electrode for nitrate electroreduction in water[J]. Journal of Materials Science, 2021, 56(12): 7357-7371. doi: 10.1007/s10853-020-05764-3
[16] 吴雨晴, 朱宗强, 张立浩, 等. 纳米钯铜改性毛竹炭三维电催化还原水中硝酸盐氮的机理研究[J]. 环境科学研究, 2022, 35(9): 2156-2164.
[17] 吴健群, 胡锋平, 李一鸣, 等. 金属单原子催化剂稳定、制备与应用的研究进展[J]. 环境化学, 2022, 41(5): 1757-1775.
[18] SHI X X, LIN Y, HUANG L, et al. Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles[J]. ACS Catalysis, 2020, 10(5): 3495-3504. doi: 10.1021/acscatal.9b05321
[19] WANG J, LI Z J, WU Y E, et al. Fabrication of single-atom catalysts with precise structure and high metal loading[J]. Advanced Materials, 2018, 30(48): 1801649. doi: 10.1002/adma.201801649
[20] LU Y B, KUO C T, KOVARIK L, et al. A versatile approach for quantification of surface site fractions using reaction kinetics: The case of CO oxidation on supported Ir single atoms and nanoparticles[J]. Journal of Catalysis, 2019, 378: 121-130. doi: 10.1016/j.jcat.2019.08.023
[21] 王琳, 金艳, 宋兴福, 等. 三维电催化氧化处理对硝基苯酚废水[J]. 华东理工大学学报 (自然科学版), 2018, 44(3): 289-295,315.
[22] LEE B H, PARK S, KIM M, et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts[J]. Nature Materials, 2019, 18(6): 620-626. doi: 10.1038/s41563-019-0344-1
[23] ZHU C Z, SHI Q R, FENG S, et al. Single-atom catalysts for electrochemical water splitting[J]. ACS Energy Letters, 2018, 3(7): 1713-1721. doi: 10.1021/acsenergylett.8b00640
[24] DAELMAN N, CAPDEVILA-CORTADA M, LOPEZ N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts[J]. Nature Materials, 2019, 18(11): 1215-1221. doi: 10.1038/s41563-019-0444-y
[25] ZHANG Y M, ZHAO Y L, CHEN Z, et al. Fe/Cu composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal[J]. Journal of the Electrochemical Society, 2018, 165(9): E420. doi: 10.1149/2.0081810jes
[26] 石秋俊, 刘安迪, 唐柏彬, 等. Ni掺杂Sb-SnO2瓷环粒子电极电催化氧化磺胺嘧啶[J]. 环境科学, 2020, 41(4): 1725-1733.
[27] YIN H B, CHEN Z, XIONG S C, et al. Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia[J]. Chem Catalysis, 2021, 1(5): 1088-1103. doi: 10.1016/j.checat.2021.08.014
[28] NGUYEN V K, PARK Y, YANG H, et al. Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(6): 783-793.
[29] RAJMOHAN K S, CHETTY R. Nitrate reduction at electrodeposited copper on copper cathode[J]. ESC Transactions, 2014, 59(1): 397-407.
[30] LAN H C, LIU X B, LIU H J, et al. Efficient nitrate reduction in a fluidized electrochemical reactor promoted by Pd–Sn/AC particles[J]. Catalysis Letters, 2016, 146(1): 91-99. doi: 10.1007/s10562-015-1615-3
[31] ZHANG X, WANG Y T, LIU C B, et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction[J]. Chemical Engineering Journal, 2021, 403: 126269. doi: 10.1016/j.cej.2020.126269
[32] DIMA G E, DE VOOYS A C A, KOPER M T M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions[J]. Journal of Electroanalytical Chemistry, 2003, 554-555: 15-23. doi: 10.1016/S0022-0728(02)01443-2
[33] SHIN H, JUNG S, BAE S, et al. Nitrite reduction mechanism on a Pd surface[J]. Environmental Science & Technology, 2014, 48(21): 12768-12774.
[34] GAO J N, JIANG B, NI C C, et al. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies[J]. Chemical Engineering Journal, 2020, 382: 123034. doi: 10.1016/j.cej.2019.123034
[35] CHENG X F, HE J H, JI H Q, et al. Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia[J]. Advanced Materials, 2022, 34(36): 2205767. doi: 10.1002/adma.202205767
[36] XU Y T, XIE M Y, ZHONG H Q, et al. In situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction[J]. ACS Catalysis, 2022, 12(14): 8698-8706. doi: 10.1021/acscatal.2c02033