[1] |
LI T, ZHANG L, AI W, et al. A modified MBR system with post advanced purification for domestic water supply system in 180-day CELSS: Construction, pollutant removal and water allocation[J]. Journal of Environmental Management 2018, 222: 37-43.
|
[2] |
GUO S S, MAO R X, ZHANG L L, et al. Progress and prospect of research on controlled ecological life support technique[J]. Reach, 2017, 6: 1-10. doi: 10.1016/j.reach.2017.06.002
|
[3] |
张良长, 李婷, 余青霓, 等. 4人180天集成实验环控生保系统设计及运行概况[J]. 航天医学与医学工程, 2018, 31(2): 273-281.
|
[4] |
ZHANG L, LI T, AI W, et al. Water management in a controlled ecological life support system during a 4-person-180-day integrated experiment: Configuration and performance[J]. Science of the Total Environment, 2019, 651: 2080-2086. doi: 10.1016/j.scitotenv.2018.10.080
|
[5] |
ZABEL P, BORNEMANN G, TAJMAR M, et al. Yield of dwarf tomatoes grown with a nutrient solution based on recycled synthetic urine[J]. Life Sciences in Space Research, 2019, 20: 62-71. doi: 10.1016/j.lssr.2019.01.001
|
[6] |
DENG S, XIE B, LIU H. The recycle of water and nitrogen from urine in bioregenerative life support system[J]. Acta Astronautica, 2016, 123: 86-90. doi: 10.1016/j.actaastro.2016.03.007
|
[7] |
HAGOPIAN D S, RILEY J G. A closer look at the bacteriology of nitrification[J]. Aquacultural Engineering, 1998, 18: 223-244. doi: 10.1016/S0144-8609(98)00032-6
|
[8] |
ZHANG F, YANG H, WANG J, et al. Effect of free ammonia inhibition on NOB activity in high nitrifying performance of sludge[J]. RSC Advances, 2018, 8(56): 31987-31995. doi: 10.1039/C8RA06198J
|
[9] |
SEUNTJENS D, HAN M, KERCKHOF F M, et al. Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants[J]. Water Research, 2018, 138: 37-46. doi: 10.1016/j.watres.2017.11.044
|
[10] |
CHENG Z, WEI Y, GAO M, et al. Development of a combined anaerobic and aerobic membrane bioreactor for wastewater treatment and reclamation in terrestrial-based Controlled Ecological Life Support System[J]. Water Science & Technology:Water Supply, 2018, 19(3): 718-724.
|
[11] |
OOSTERHUIS M, LOOSDRECHT V, M C M. Nitrification of urine for H2S control in pressure sewers[J]. Water Practice and Technology, 2009, 4(3):WPT2009059.
|
[12] |
王优, 汪形艳, 张良长, 等. 两级MBfR工艺处理高强度生活废水能力研究[J]. 化工学报, 2020, 71(5): 2363-2372.
|
[13] |
VEROSTKO C E, CARRIER C, GB TECH I. Ersatz wastewater formulations for testing water recovery systems[J]. Sae Technical Papers, 2004, 113: 1008-1024.
|
[14] |
ALLEMAN J E. Elevated nitrite occurrence in biological wastewater treatment systems[J]. Water Science and Technology, 1985, 17(2/3): 409-419. doi: 10.2166/wst.1985.0147
|
[15] |
DOWNING A L, PAINTER H A, KNOWLES G. Nitrification in the activated sludge process[J]. Journal of the Institute of Sewage Purification, 1964: 130-153.
|
[16] |
PENG L, QIU H, LI S, et al. The mitigation effect of free ammonia and free nitrous acid on nitrous oxide production from the full-nitrification and partial-nitritation systems[J]. Bioresource Technology, 2022: 128564.
|
[17] |
杨宏, 姚仁达. pH和硝化细菌浓度对氨氮氧化速率的影响[J]. 环境工程学报, 2017, 11(5): 2660-2665. doi: 10.12030/j.cjee.201512155
|
[18] |
NIU X, HAN X, JIN Y, et al. Aerobic granular sludge treating hypersaline wastewater: Impact of pH on granulation and long-term operation at different organic loading rates[J]. Journal Environmental Management, 2023, 330: 117164.
|
[19] |
LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review[J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039
|
[20] |
ANTHONISEN A, LOEHR R, PRAKASAM T, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control Federation, 1976, 48(5): 835-852.
|
[21] |
ZHOU Y, OEHMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682. doi: 10.1016/j.watres.2011.06.025
|
[22] |
CIUDAD G, GONZALEZ R, BORNHARDT C, et al. Modes of operation and pH control as enhancement factors for partial nitrification with oxygen transport limitation[J]. Water Res, 2007, 41(20): 4621-4629. doi: 10.1016/j.watres.2007.06.036
|
[23] |
高兰, 钟振兴, 艾庆华, 等. CIBR污泥对生活污水中氨氮的吸附性能分析[J]. 环境工程, 2019, 37(8): 66-69. doi: 10.13205/j.hjgc.201908012
|
[24] |
WANG L, ZHENG P, ABBAS G, et al. Enrichment and characterization of acid-tolerant nitrifying sludge[J]. Journal of Environmental Management, 2016, 184: 196-203.
|
[25] |
ALBINA P, DURBAN N, BERTRON A, et al. Nitrate and nitrite bacterial reduction at alkaline pH and high nitrate concentrations, comparison of acetate versus dihydrogen as electron donors[J]. Journal Environmental Management, 2021, 280: 111859.
|
[26] |
张昕, 吴长峰, 于雪, 等. pH值对亚硝酸盐氧化菌动力学及功能基因的影响[J]. 中国环境科学, 2020, 40(4): 1537-1544. doi: 10.3969/j.issn.1000-6923.2020.04.019
|
[27] |
DOWNING L S, NERENBERG R. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process[J]. water research, 2008, 42: 3697-3708. doi: 10.1016/j.watres.2008.06.006
|
[28] |
WANG Z, MENG Y, ZHU-BARKER X, et al. Responses of nitrification and ammonia oxidizers to a range of background and adjusted pH in purple soils[J]. Geoderma, 2019, 334: 9-14. doi: 10.1016/j.geoderma.2018.07.038
|
[29] |
遇光禄, 喻立军, 唐颖栋. pH对高浓度氨氮短程硝化抑制动力学的影响[J]. 环境污染与防治, 2013, 35(6): 65-68. doi: 10.3969/j.issn.1001-3865.2013.06.013
|
[30] |
PAEPE J D, PAEPE K D, GòDIA F, et al. Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification[J]. Water Research, 2020, 185: 116-223.
|