[1] SHARMA R, KUMARI R, PANT D, et al. Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of Microbial Fuel Cells[J]. Chemosphere, 2021, 292: 133437.
[2] 郭璇. 微生物燃料电池技术底物的研究进展[J]. 广东化工, 2014, 41(18): 112-113. doi: 10.3969/j.issn.1007-1865.2014.18.059
[3] 孔晓英, 孙永明, 李连华, 等. 不同底物对微生物燃料电池产电性能的影响[J]. 农业工程学报, 2011, 27(S1): 185-188.
[4] WALTER X A, GAJDA I, FORBES S, et al. Scaling-up of a novel, simplified MFC stack based on a self-stratifying urine column[J]. Biotechnology for biofuels, 2016, 9(1): 93. doi: 10.1186/s13068-016-0504-3
[5] LEDEZMA P, KUNTKE P, BUISMAN C J N, et al. Source-separated urine opens golden opportunities for microbial electrochemical technologies[J]. Trends in Biotechnology, 2015, 33(4): 214-220. doi: 10.1016/j.tibtech.2015.01.007
[6] 高振超. 尿液的氮磷资源化与处理技术研究[D]. 北京: 北京交通大学. 2018.
[7] IEROPOULOS I, GREENMAN J, MELHUISH C. Urine utilization by microbial fuel cells; energy fuel for the future[J]. Physical Chemistry Chemical Physics, 2011, 14(1): 94-98.
[8] KUNTKE P, SMIECH K M, BRUNING H, et al. Ammonium recovery and energy production from urine by a microbial fuel cell[J]. Water Research, 2012, 46(8): 2627-2636. doi: 10.1016/j.watres.2012.02.025
[9] SANTORO C, IEROPOULOS I, GREENMAN J, et al. Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine[J]. Journal of Power Sources, 2013, 238: 190-196. doi: 10.1016/j.jpowsour.2013.03.095
[10] SALAR G M J, SANTORO C, KODALI M, et al. Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine[J]. Journal of power sources, 2019, 425: 50-59. doi: 10.1016/j.jpowsour.2019.03.052
[11] TAGHAVI M, STINCHCOMBE A, GREENMAN J, et al. Self-sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC[J]. Bioinspiration & Biomimetics, 2016, 11(1): 016001.
[12] IEROPOULOS I A, LEDEZMA P, STINCHCOMBE A, et al. Waste to real energy: the first MFC powered mobile phone[J]. Physical Chemistry Chemical Physics, 2013, 15(37): 15312-15316. doi: 10.1039/c3cp52889h
[13] WALTER X A, GREENMAN J, IEROPOULOS I A. Microbial fuel cells directly powering a microcomputer[J]. Journal of Power Sources, 2020, 446: 227328. doi: 10.1016/j.jpowsour.2019.227328
[14] LIU Y, HE L F, DENG Y Y. Recent progress on the recovery of valuable resources fromsource-separated urine on-site using electrochemical technologies: A review[J]. Chemical engineering journal, 2022, 442(1): 136200.
[15] IEROPOULOS I, STINCHCOMBE A, GAJDA I, et al. Pee Power Urinal – Microbial Fuel Cell Technology Field Trials In The Context Of Sanitation[J]. Environmental Science:Water Research & Technology, 2016, 2(2): 336-343.
[16] WALTER X A, YOU J, WINFIELD J, et al. From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights[J]. Applied Energy, 2020, 277: 115514. doi: 10.1016/j.apenergy.2020.115514
[17] WALTER X A, MERINO-JIMÉNEZ I, GREENMAN J, et al. PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting[J]. Journal of Power Sources, 2018, 392: 150-158. doi: 10.1016/j.jpowsour.2018.02.047
[18] NARAYANANA N, MANGOTTIRI V, NARAYANAN K. Waste to Energy Conversion and Sustainable Recovery of Nutrients from Pee Power - Recent Advancements in Urine-Fed MFCs[J]. Mini-Reviews in Organic Chemistry, 2019, 16(7): 768-779.
[19] MASRURA S U, DISSANAYAKE P, YUQING S, et al. Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2020, 51(24): 3016-3048.
[20] YANG N, LIU H, JIN X, et al. One-pot degradation of urine wastewater by combining simultaneous halophilic nitrification and aerobic denitrification in air-exposed biocathode microbial fuel cells (AEB-MFCs)[J]. Science of The Total Environment, 2020, 748: 141379. doi: 10.1016/j.scitotenv.2020.141379
[21] 刘有华, 王思婷, 杨乔乔, 等. 国内外水体富营养化现状及聚磷菌研究进展[J]. 江苏农业科学, 2021, 49(9): 26-35.
[22] 刘远峰, 张秀玲, 张其春, 等. 微生物燃料电池中阳极产电菌的研究进展[J]. 精细化工, 2020, 37(9): 1729-1737. doi: 10.13550/j.jxhg.20200001
[23] PRATHIBA S, KUMAR P S, VO D N. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment[J]. Chemosphere, 2021, 286(Pt 3): 131856.
[24] 黄霞, 梁鹏, 曹效鑫, 等. 无介体微生物燃料电池的研究进展[J]. 中国给水排水, 2007, 23(4): 1-6. doi: 10.3321/j.issn:1000-4602.2007.04.001
[25] 洪义国, 郭俊, 孙国萍. 产电微生物及微生物燃料电池最新研究进展[J]. 微生物学报, 2007, 47(1): 173-177. doi: 10.3321/j.issn:0001-6209.2007.01.036
[26] 杨政伟, 顾莹莹, 赵朝成, 等. 土壤微生物燃料电池的研究进展及展望[J]. 化工学报, 2017, 68(11): 3995-4004. doi: 10.11949/j.issn.0438-1157.20170793
[27] OBATA O, SALAR-GARCIA M J, GREENMAN J, et al. Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation[J]. J Environ Manage, 2020, 258: 109992. doi: 10.1016/j.jenvman.2019.109992
[28] SALARGARCIA M J, OBATA O, KURT H, et al. Impact of inoculum type on the microbial community and power performance of urine-fed Microbial Fuel Cells[J]. Microorganisms, 2020, 8(12): 1921. doi: 10.3390/microorganisms8121921
[29] Barbosa S G, Peixoto L, Soares O, et al. Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine[J]. Electrochimica Acta, 2018: 122-132.
[30] THAPA B S, KIM T, PANDIT S, et al. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry[J]. Bioresource Technology, 2022, 347: 126579. doi: 10.1016/j.biortech.2021.126579
[31] PRIYA S, SRIKANTH M. Nutrient recovery and microbial diversity in human urine fed microbial fuel cell[J]. Water Science & Technology, 2019, 79(4): 718-730.
[32] OLUWATOSIN O, JOHN G, HALIL K, et al. Resilience and limitations of MFC anodic community when exposed to antibacterial agents[J]. Bioelectrochemistry, 2020, 134: 107500. doi: 10.1016/j.bioelechem.2020.107500
[33] 贾婧, 彭俊霖, 王一靖, 等. 反硝化微生物燃料电池脱除低C/N废水中氮的研究[J]. 环境污染与防治, 2021, 43(8): 937-941. doi: 10.15985/j.cnki.1001-3865.2021.08.002
[34] 陈诗雨, 许志成, 杨婧, 等. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. doi: 10.16085/j.issn.1000-6613.2021-0420
[35] PRIYA S, DEVENDRA K, SRIKANTH M. Probing the degradation of pharmaceuticals in urine using MFC and studying their removal efficiency by UPLC-MS/MS[J]. Journal of Pharmaceutical Analysis, 2021, 11(3): 320-329. doi: 10.1016/j.jpha.2020.04.006
[36] SÓNIA G B, LUCIANA P, OLÍVIA S G P S, et al. Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine[J]. Electrochimica Acta, 2018, 267: 122-132. doi: 10.1016/j.electacta.2018.02.083
[37] IEROPOULOS I, OBATA O, PASTERNAK G, et al. Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells[J]. Journal of industrial microbiology & biotechnology, 2019, 46(5): 587-599.
[38] GREENMAN J, GAJDA I, IEROPOULOS I. Microbial Fuel Cells (MFC) and microalgae; Photo Microbial Fuel Cell (PMFC) as complete recycling machines[J]. Sustainable Energy & Fuels, 2019, 3(10): 2546-2560.
[39] 王美聪, 王紫诺, 张学军. 羧甲基纤维素钠为阳极底物的微生物燃料电池产电性能[J]. 化工管理, 2020(4): 108-109. doi: 10.3969/j.issn.1008-4800.2020.04.068
[40] 张吉强. 微生物燃料电池同步脱氮产电性能及机理研究[D]. 杭州: 浙江大学, 2014.
[41] 汪飞. MnO2/聚苯胺复合修饰微生物燃料电池阳极处理垃圾渗滤液[D]. 淮南: 安徽理工大学, 2021.
[42] 袁晓东. 基于A/O工艺的双室MFC脱氮除磷及产电性能的研究[D]. 张家口: 河北建筑工程学院, 2020.
[43] 梁涛. 光合微生物燃料电池(PMFC)同步处理两种不同废水的研究[D]. 太原: 太原理工大学, 2019.
[44] 沈文瑞. 阳极菌群的调控对微生物燃料电池产能的促进[D]. 济南: 齐鲁工业大学, 2020.
[45] 李莉, 代勤, 张赛, 等. 不同pH下微生物燃料电池降解含硫偶氮染料废水的效能及其机理[J]. 环境工程学报, 2021, 15(1): 115-125. doi: 10.12030/j.cjee.202004125
[46] SANTORO C, GARCIA M, WALTER X A, et al. Urine in bioelectrochemical systems: An overall review[J]. ChemElectroChem, 2020, 7(6): 1312-1331. doi: 10.1002/celc.201901995
[47] 臧华生, 周新国, 李会贞, 等. pH值和碳氮比对微生物燃料电池脱氮除磷效果的影响[J]. 灌溉排水学报, 2019, 38(2): 49-55.
[48] 王佳琪, 付国楷, 黄梓良, 等. 碳氮比对高盐废水单室MFCs产电、污染物去除及微生物群落结构的影响[J]. 环境工程学报, 2021, 15(4): 1354-1366. doi: 10.12030/j.cjee.202009094
[49] CATAL T, KUL A, ATALAY V E, et al. Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater[J]. Journal of Power Sources, 2019, 414: 1-7. doi: 10.1016/j.jpowsour.2018.12.078
[50] HAO J W, ZENG H B, LI X Y, et al. Nitrogen and phosphorous recycling from human urine by household electrochemical fixed bed in sparsely populated regions[J]. Water Research, 2022, 218: 118467. doi: 10.1016/j.watres.2022.118467
[51] SANTORO C, IEROPOULOS I, GREENMAN J, et al. Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11543-11551. doi: 10.1016/j.ijhydene.2013.02.070
[52] TAGHAVI M, GREENMAN J, BE CC AI L, et al. High-performance, totally flexible, tubular Microbial Fuel Cell[J]. ChemElectroChem, 2015, 1(11): 1994-1999.
[53] IEROPOULOS I A, GREENMAN J, MELHUISH C. Miniature microbial fuel cells and stacks for urine utilisation[J]. International Journal of Hydrogen Energy, 2013, 38(1): 492-496. doi: 10.1016/j.ijhydene.2012.09.062
[54] CARLO S, XAVIER A W, FRANCESCA S, et al. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine[J]. Electrochimica Acta, 2019, 307: 241-252. doi: 10.1016/j.electacta.2019.03.194
[55] GAJDA I, GREENMAN J, MELHUISH C, et al. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture[J]. Water Research, 2015, 86: 108-115.
[56] 于瑞娟. BES处理尿液的影响因素及能源回收资源化研究[D]. 西安: 陕西科技大学, 2019.
[57] YOUSEFI R, MARDANPOUR M M, YAGHMAEI S. Fabrication of the macro and micro-scale microbial fuel cells to monitor oxalate biodegradation in human urine[J]. Scientific reports, 2021, 11(1): 14346. doi: 10.1038/s41598-021-93844-y
[58] 周宇. 尿液微生物燃料电池阳极性能的研究[D]. 北京: 北京工业大学, 2017.
[59] GAO Y F, SUN D Y, WANG H, et al. Urine-powered synergy of nutrient recovery and urine purification in a microbial electrochemical system[J]. Environmental Science:Water Research & Technology, 2018, 4(10): 1427-1438.
[60] 陈稳稳, 刘中良, 侯俊先, 等. 新型超级电容器材料修饰尿液微生物燃料电池阳极的研究[J]. 工程热物理学报, 2018, 39(8): 1818-1823.
[61] YOU J, SANTORO C, GREENMAN J, et al. Micro-porous layer (MPL)-based anode for microbial fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21811-21818. doi: 10.1016/j.ijhydene.2014.07.136
[62] IWONA G, JOHN G, IOANNIS I. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder[J]. Applied Energy, 2020, 262: 114475. doi: 10.1016/j.apenergy.2019.114475
[63] GAJDA I, GREENMAN J, SANTORO C, et al. Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine[J]. Journal of chemical technology and biotechnology, 2019, 94(7): 2098-2106. doi: 10.1002/jctb.5792
[64] DECTOR D, ORTEGA-DIAZ D, OLIVARES-RAMIREZ J M, et al. Harvesting energy from real human urine in a photo-microfluidic fuel cell using TiO2–Ni anode electrode[J]. International Journal of Hydrogen Energy, 2021, 46(51): 26163-26173. doi: 10.1016/j.ijhydene.2021.02.148
[65] CLEMENT A C, ANDREW S, IOANNIS I, et al. Urine microbial fuel cells in a semi-controlled environment for onsite urine pre-treatment and electricity production[J]. Journal of Power Sources, 2018, 400: 441-448. doi: 10.1016/j.jpowsour.2018.08.051
[66] HAN C, YUAN X, MA S, et al. Simultaneous recovery of nutrients and power generation from source-separated urine based on bioelectrical coupling with the hydrophobic gas permeable tube system[J]. Science of the Total Environment, 2022, 824: 153788. doi: 10.1016/j.scitotenv.2022.153788
[67] SIDAN L, HONGNA L, GUANGCAI T, et al. Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption[J]. Chemical Engineering Journal, 2019, 373: 1072-1080. doi: 10.1016/j.cej.2019.05.130
[68] STEFANO F, MADDALENA E L, JULIETTE M, et al. Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine[J]. Sustainability, 2019, 11(19): 5490. doi: 10.3390/su11195490
[69] WALTER X A, MADRID E, GAJDA I, et al. Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes[J]. Journal of Power Sources, 2022, 520: 230875. doi: 10.1016/j.jpowsour.2021.230875
[70] RAMIREZ-NAVA J, MARTINEZ-CASTREJON M, GARCIA-MESINO R L, et al. The implications of membranes used as separators in microbial fuel cells[J]. Membranes(Basel), 2021, 11(10): 738. doi: 10.3390/membranes11100738
[71] SALAR-GARCÍA M J, WALTER X A, GURAUSKIS J, et al. Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators[J]. Electrochimica Acta, 2021, 367: 137385. doi: 10.1016/j.electacta.2020.137385
[72] MERINOJIMENEZ I, OBATA O, PASTERNAK G, et al. Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine[J]. Process biochemistry (Barking, London, England), 2021, 101: 294-303.
[73] JIMENEZ I M, BRINSON P, GREENMAN J, et al. Electronic faucet powered by low cost ceramic microbial fuel cells treating urine[J]. Journal of Power Sources, 2021, 506(1): 230004.
[74] DE RAMON-FERNANDEZ A, SALAR-GARCIA M J, RUIZ F D, et al. Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells[J]. Energy (Oxf), 2020, 213: 118806. doi: 10.1016/j.energy.2020.118806
[75] WALTER X A, SANTORO C, GREENMAN J, et al. Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height[J]. International Journal of Hydrogen Energy, 2019, 44(9): 4524-4532. doi: 10.1016/j.ijhydene.2018.07.033
[76] GAJDA I, OBATA O, GREENMAN J, et al. Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species[J]. Scientific Reports, 2020, 10(1): 5533. doi: 10.1038/s41598-020-60626-x
[77] 周宇, 刘中良, 侯俊先, 等. 石墨烯类材料修饰尿液微生物燃料电池阳极的研究[J]. 化工学报, 2018, 69(6): 2790-2796.
[78] ZHOU Y, HOU J X, CHEN W W, et al. Carbon nanotube sponge 3D anodes for urine-powered microbial fuel cell[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2017, 39(14): 1543-1547. doi: 10.1080/15567036.2017.1339220
[79] ZHOU Y, TANG L J, LIU Z L, et al. A novel anode fabricated by three-dimensional printing for use in urine-powered microbial fuel cell[J]. Biochemical Engineering Journal, 2017, 124: 36-43. doi: 10.1016/j.bej.2017.04.012
[80] SALAR-GARCIA M J, MONTILLA F, QUIJADA C, et al. Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes[J]. Applied Energy, 2020, 278: 115528. doi: 10.1016/j.apenergy.2020.115528
[81] THULASINATHAN B,JAYABALAN T,ARUMUGAM N, et al. Wastewater substrates in microbial fuel cell systems for carbon-neutral bioelectricity generation: An overview[J]. Fuel, 2022, 317: 123369. doi: 10.1016/j.fuel.2022.123369
[82] 罗帝洲, 许玫英, 杨永刚. 微生物燃料电池串并联研究及应用[J]. 环境化学, 2020, 39(8): 2227-2236. doi: 10.7524/j.issn.0254-6108.2019052802
[83] WALTER X A, SANTORO C, GREENMAN J, et al. Scaling up self-stratifying supercapacitive microbial fuel cell[J]. Int J Hydrogen Energy, 2020, 45(46): 25240-25248. doi: 10.1016/j.ijhydene.2020.06.070
[84] MERINO-JIMENEZ I, GONZALEZ-JUAREZ F, GREENMAN J, et al. Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation[J]. Journal of Power Sources, 2019, 429: 30-37. doi: 10.1016/j.jpowsour.2019.04.043
[85] VENKATA M S, RAGHUVULU S V, SRIKANTH S, et al. Bioelectricity production by meditorless microbial fuel cell (MFC) under acidophilic condition using wastewater as substrate: influence of substrate loading rate[J]. Current Science, 2007, 92(12): 1720-1726.
[86] HIL M F, ABU BAKAR M H. Tubular ceramic performance as separator for microbial fuel cell: A review[J]. International Journal of Hydrogen Energy, 2020, 45(42): 22340-22348. doi: 10.1016/j.ijhydene.2019.08.115
[87] WALTER X A, SANTORO C, GREENMAN J, et al. Scalability and stacking of self-stratifying microbial fuel cells treating urine[J]. Bioelectrochemistry, 2020, 133: 107491. doi: 10.1016/j.bioelechem.2020.107491
[88] YAMANE T,YOSHIDA N,SUGIOKA M, et al. Estimation of total energy requirement for sewage treatment by a microbial fuel cell with a one-meter air-cathode assuming Michaelis-Menten COD degradation[J]. RSC Advances, 2021, 11(33): 20036-20045. doi: 10.1039/d1ra03061b.eCollection2021Jun3