[1] ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly [J]. Nature Microbiology, 2018, 3(4): 470-480. doi: 10.1038/s41564-018-0129-3
[2] FISCHER H, ECKHARDT K U, MEYER A, et al. Rhizodeposition of maize: Short-term carbon budget and composition [J]. Journal of Plant Nutrition and Soil Science, 2010, 173(1): 67-79. doi: 10.1002/jpln.200800293
[3] VENTURI V, KEEL C. Signaling in the rhizosphere [J]. Trends in Plant Science, 2016, 21(3): 187-198. doi: 10.1016/j.tplants.2016.01.005
[4] 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望 [J]. 植物生态学报, 2018, 42(11): 1055-1070. doi: 10.17521/cjpe.2018.0156 YIN H J, ZHANG Z L, LIU Q. Root exudates and their ecological consequences in forest ecosystems: Problems and perspective [J]. Chinese Journal of Plant Ecology, 2018, 42(11): 1055-1070(in Chinese). doi: 10.17521/cjpe.2018.0156
[5] MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms [J]. FEMS Microbiology Reviews, 2013, 37(5): 634-663. doi: 10.1111/1574-6976.12028
[6] THIJS S, SILLEN W, RINEAU F, et al. Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: Engineering the metaorganism [J]. Frontiers in Microbiology, 2016, 7: 341.
[7] 苗月霞. 植物根系分泌物的超高分辨率质谱分子表征与微生物代谢研究 [D]. 北京: 中国科学院大学, 2020. MIAO Y X. Molecular characterization by FT-ICR MS and microbial metabolism of root exudates[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese).
[8] LEFF J W, LYNCH R C, KANE N C, et al. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus [J]. New Phytologist, 2017, 214(1): 412-423. doi: 10.1111/nph.14323
[9] AINSWORTH E A, GILLESPIE K M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent [J]. Nature Protocols, 2007, 2(4): 875-877. doi: 10.1038/nprot.2007.102
[10] 杜静, 杨家学, 焦晓林, 等. 氮、磷、钾缺乏对西洋参根分泌物中酚酸类化合物的影响 [J]. 中国中药杂志, 2011, 36(3): 326-329. DU J, YANG J X, JIAO X L, et al. Effect of nitrogen, phosphorus and potassium deficiency on content of phenolic compounds in exudation of American ginseng [J]. China Journal of Chinese Materia Medica, 2011, 36(3): 326-329(in Chinese).
[11] WANG J X, DING Z J, BIAN J, et al. Chemotaxis response of Meloidogyne incognita to volatiles and organic acids from root exudates [J]. Rhizosphere, 2021, 17: 100320. doi: 10.1016/j.rhisph.2021.100320
[12] 梁坤, 樊玉清, KUDAKWASHE MEKI, 等. 黄河口湿地典型盐碱植被群落土壤氮素的季节动态及根际效应 [J]. 环境化学, 2019, 38(10): 2327-2335. doi: 10.7524/j.issn.0254-6108.2018120301 LIANG K, FAN Y Q, MEKI K, et al. The seasonal dynamics of nitrogen and rhizosphere effects in the typical saline-alkali vegetation communities of the Yellow River Estuary wetland [J]. Environmental Chemistry, 2019, 38(10): 2327-2335(in Chinese). doi: 10.7524/j.issn.0254-6108.2018120301
[13] 程俊伟, 蔡深文, 黄明琴, 等. 贵州遵义锰矿区植物根际土壤中重金属形态迁移转化及风险评价 [J]. 环境化学, 2022, 41(9): 2833-2841. doi: 10.7524/j.issn.0254-6108.2021050606 CHENG J W, CAI S W, HUANG M Q, et al. Heavy metal speciation migration transformation and risk assessment in plant rhizosphere soil of Zunyi manganese mineland, Guizhou [J]. Environmental Chemistry, 2022, 41(9): 2833-2841(in Chinese). doi: 10.7524/j.issn.0254-6108.2021050606
[14] ZHAO M L, ZHAO J, YUAN J, et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth [J]. Plant, Cell & Environment, 2021, 44(2): 613-628.
[15] STRICKLAND M S, MCCULLEY R L, NELSON J A, et al. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities [J]. Frontiers in Microbiology, 2015, 6: 817.
[16] MIAO Y X, LV J T, HUANG H L, et al. Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry [J]. Journal of Environmental Sciences, 2020, 98: 22-30. doi: 10.1016/j.jes.2020.05.011
[17] DENG S P, TABATABAI M A. Colorimetric determination of reducing sugars in soils [J]. Soil Biology and Biochemistry, 1994, 26(4): 473-477. doi: 10.1016/0038-0717(94)90179-1
[18] KORSHIN G V, BENJAMIN M M, SLETTEN R S. Adsorption of natural organic matter (NOM) on iron oxide: Effects on NOM composition and formation of organo-halide compounds during chlorination [J]. Water Research, 1997, 31(7): 1643-1650. doi: 10.1016/S0043-1354(97)00007-9
[19] 谢理, 杨浩, 渠晓霞, 等. 滇池典型陆生和水生植物溶解性有机质组分的光谱分析 [J]. 环境科学研究, 2013, 26(1): 72-79. doi: 10.13198/j.res.2013.01.76.xiel.004 XIE L, YANG H, QU X X, et al. Characterization of water extractable organic matters from the dominant plants in lake Dianchi by multiple spectroscopic techniques [J]. Research of Environmental Sciences, 2013, 26(1): 72-79(in Chinese). doi: 10.13198/j.res.2013.01.76.xiel.004
[20] 吴东明, 邓晓, 李怡, 等. 土壤溶解性有机质的提取与特性分析研究进展 [J]. 江苏农业科学, 2019, 47(3): 6-11. WU D M, DENG X LI Y, et al. Research progress for extraction and characterization of dissolved organic matter in soil [J]. Jiangsu Agricultural Sciences, 2019, 47(3): 6-11(in Chinese).
[21] WANG C K, ZHANG X J, WANG J, et al. Characterization of dissolved organic matter as N-nitrosamine precursors based on hydrophobicity, molecular weight and fluorescence [J]. Journal of Environmental Sciences, 2013, 25(1): 85-95. doi: 10.1016/S1001-0742(12)60029-1
[22] MINOR E C, SWENSON M M, MATTSON B M, et al. Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis [J]. Environmental Science:Processes & Impacts, 2014, 16(9): 2064-2079.
[23] 何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展 [J]. 环境科学学报, 2016, 36(2): 359-372. HE W, BAI Z L, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372(in Chinese).
[24] RUGOVA A, PUSCHENREITER M, KOELLENSPERGER G, et al. Elucidating rhizosphere processes by mass spectrometry - A review [J]. Analytica Chimica Acta, 2017, 956: 1-13. doi: 10.1016/j.aca.2016.12.044
[25] EILERS E J, PAULS G, RILLIG M C, et al. Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots [J]. Journal of Chemical Ecology, 2015, 41(3): 253-266. doi: 10.1007/s10886-015-0559-9
[26] NEUMANN G, BOTT S, OHLER M A, et al. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils [J]. Frontiers in Microbiology, 2014, 5: 2.
[27] DERRIEN D, MAROL C, BALESDENT J. The dynamics of neutral sugars in the rhizosphere of wheat. An approach by 13C pulse-labelling and GC/C/IRMS [J]. Plant and Soil, 2004, 267(1/2): 243-253.
[28] BERNÁRDEZ M M, de la MONTAÑA MIGUÉLEZ J, QUEIJEIRO J G. HPLC determination of sugars in varieties of chestnut fruits from Galicia (Spain) [J]. Journal of Food Composition and Analysis, 2004, 17(1): 63-67. doi: 10.1016/S0889-1575(03)00093-0
[29] FAN T W, LANE A N, SHENKER M, et al. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS [J]. Phytochemistry, 2001, 57(2): 209-221. doi: 10.1016/S0031-9422(01)00007-3
[30] READ D B, BENGOUGH A G, GREGORY P J, et al. Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil [J]. New Phytologist, 2003, 157(2): 315-326. doi: 10.1046/j.1469-8137.2003.00665.x
[31] LU Y F, ZHOU Y R, NAKAI S, et al. Stimulation of nitrogen removal in the rhizosphere of aquatic duckweed by root exudate components [J]. Planta, 2014, 239(3): 591-603. doi: 10.1007/s00425-013-1998-6
[32] SUZUKI K, OKAZAKI K, TAWARAYA K, et al. Gas chromatography-mass spectrometry associated global analysis of rice root exudates under aseptical conditions [J]. Soil Science and Plant Nutrition, 2009, 55(4): 505-513. doi: 10.1111/j.1747-0765.2009.00390.x
[33] LIN C, OWEN S M, PEÑUELAS J. Volatile organic compounds in the roots and rhizosphere of Pinus spp [J]. Soil Biology and Biochemistry, 2007, 39(4): 951-960. doi: 10.1016/j.soilbio.2006.11.007
[34] FISCHER K. Environmental analysis of aliphatic carboxylic acids by ion-exclusion chromatography [J]. Analytica Chimica Acta, 2002, 465(1/2): 157-173.
[35] ROSENBERG E. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis [J]. Journal of Chromatography A, 2003, 1000(1/2): 841-889.
[36] DELL'MOUR M, JAITZ L, OBURGER E, et al. Hydrophilic interaction LC combined with electrospray MS for highly sensitive analysis of underivatized amino acids in rhizosphere research [J]. Journal of Separation Science, 2010, 33(6/7): 911-922.
[37] TSEDNEE M, MAK Y W, CHEN Y R, et al. A sensitive LC-ESI-Q-TOF-MS method reveals novel phytosiderophores and phytosiderophore-iron complexes in barley [J]. New Phytologist, 2012, 195(4): 951-961. doi: 10.1111/j.1469-8137.2012.04206.x
[38] CHEN Z L, KIM K R, OWENS G, et al. Determination of carboxylic acids from plant root exudates by ion exclusion chromatography with ESI-MS [J]. Chromatographia, 2008, 67(1/2): 113-117.
[39] SINGH M, AWASTHI A, SONI S K, et al. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth [J]. Scientific Reports, 2015, 5: 15500. doi: 10.1038/srep15500
[40] PROSSER J I. Molecular and functional diversity in soil micro-organisms [J]. Plant and Soil, 2002, 244(1-2): 9-17.
[41] HOULDEN A, TIMMS-WILSON T M, DAY M J, et al. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops [J]. FEMS Microbiology Ecology, 2008, 65(2): 193-201. doi: 10.1111/j.1574-6941.2008.00535.x
[42] GRAYSTON S J, WANG S, CAMPBELL C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biology and Biochemistry, 1998, 30(3): 369-378. doi: 10.1016/S0038-0717(97)00124-7
[43] SHANG Q H, YANG G, WANG Y, et al. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field [J]. World Journal of Microbiology & Biotechnology, 2016, 32(6): 95.
[44] QIU Q F, NOLL M, ABRAHAM W R, et al. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ [J]. The ISME Journal, 2008, 2(6): 602-614. doi: 10.1038/ismej.2008.34
[45] SHRESTHA M, ABRAHAM W R, SHRESTHA P M, et al. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids [J]. Environmental Microbiology, 2008, 10(2): 400-412. doi: 10.1111/j.1462-2920.2007.01462.x
[46] SZYMAŃSKA S, PŁOCINICZAK T, PIOTROWSKA-SEGET Z, et al. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L [J]. Microbiological Research, 2016, 182: 68-79. doi: 10.1016/j.micres.2015.09.007
[47] MYERS R M, FISCHER S G, LERMAN L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985, 13(9): 3131-3145. doi: 10.1093/nar/13.9.3131
[48] MUYZER G, de WAAL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59(3): 695-700. doi: 10.1128/aem.59.3.695-700.1993
[49] KONG H G, KIM N H, LEE S Y, et al. Impact of a recombinant biocontrol bacterium, Pseudomonas fluorescens pc78, on microbial community in tomato rhizosphere [J]. The Plant Pathology Journal, 2016, 32(2): 136-144. doi: 10.5423/PPJ.OA.08.2015.0172
[50] JUMPPONEN A. Soil fungal communities underneath willow canopies on a primary successional glacier forefront: RDNA sequence results can be affected by primer selection and chimeric data [J]. Microbial Ecology, 2007, 53(2): 233-246. doi: 10.1007/s00248-004-0006-x
[51] HESS N J, PAŠA-TOLIĆ L, BAILEY V L, et al. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques [J]. Rhizosphere, 2017, 3: 209-211. doi: 10.1016/j.rhisph.2017.04.007
[52] LI K F, PIDATALA V R, SHAIK R, et al. Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake [J]. Environmental Science & Technology, 2014, 48(2): 1184-1193.
[53] SALVIOLI A, BONFANTE P. Systems biology and “omics” tools: A cooperation for next-generation mycorrhizal studies [J]. Plant Science, 2013, 203/204: 107-114. doi: 10.1016/j.plantsci.2013.01.001
[54] HAO D C, XIAO P G. Rhizosphere microbiota and microbiome of medicinal plants: From molecular biology to omics approaches [J]. Chinese Herbal Medicines, 2017, 9(3): 199-217. doi: 10.1016/S1674-6384(17)60097-2
[55] 吕丽丽. 根际生物化学特性关联及其对土壤TBECH和TBCO降解的影响 [D]. 北京: 中国科学院大学, 2021. LV L L. Coupling of chemical and biological properties in rhizosphere and their effects on the degradation of TBECH and TBCO in soils[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese).
[56] LUO Q, WANG S Y, SUN L N, et al. Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS [J]. Scientific Reports, 2017, 7: 39878. doi: 10.1038/srep39878
[57] WALKER T S, BAIS H P, HALLIGAN K M, et al. Metabolic profiling of root exudates of Arabidopsis thaliana [J]. Journal of Agricultural and Food Chemistry, 2003, 51(9): 2548-2554. doi: 10.1021/jf021166h
[58] DAM N M V, BOUWMEESTER H J. Metabolomics in the rhizosphere: Tapping into belowground chemical communication [J]. Trends in Plant Science, 2016, 21(3): 256-265. doi: 10.1016/j.tplants.2016.01.008
[59] SARDANS J, PEÑUELAS J, RIVAS-UBACH A. Ecological metabolomics: Overview of current developments and future challenges [J]. Chemoecology, 2011, 21(4): 191-225. doi: 10.1007/s00049-011-0083-5
[60] DUNN W B, ELLIS D I. Metabolomics: Current analytical platforms and methodologies [J]. TrAC Trends in Analytical Chemistry, 2005, 24(4): 285-294. doi: 10.1016/j.trac.2004.11.021
[61] RIVAS-UBACH A, SARDANS J, PÉREZ-TRUJILLO M, et al. Strong relationship between elemental stoichiometry and metabolome in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11): 4181-4186. doi: 10.1073/pnas.1116092109
[62] BHALLA R, NARASIMHAN K, SWARUP S. Metabolomics and its role in understanding cellular responses in plants [J]. Plant Cell Reports, 2005, 24(10): 562-571. doi: 10.1007/s00299-005-0054-9
[63] ALIFERIS K A, JABAJI S. Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates [J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7604-7615. doi: 10.1021/jf101029a
[64] PARK S Y, LIM S H, HA S H, et al. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. Botrytis) [J]. Journal of Agricultural and Food Chemistry, 2013, 61(28): 6999-7007. doi: 10.1021/jf401330e
[65] ZHAO L J, HUANG Y X, HU J, et al. 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress [J]. Environmental Science & Technology, 2016, 50(4): 2000-2010.
[66] BOWSHER A W, ALI R, HARDING S A, et al. Evolutionary divergences in root exudate composition among ecologically-contrasting Helianthus species [J]. PLoS One, 2016, 11(1): e0148280. doi: 10.1371/journal.pone.0148280
[67] MÖNCHGESANG S, STREHMEL N, SCHMIDT S, et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data [J]. Scientific Reports, 2016, 6: 29033. doi: 10.1038/srep29033
[68] STREHMEL N, BÖTTCHER C, SCHMIDT S, et al. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana [J]. Phytochemistry, 2014, 108: 35-46. doi: 10.1016/j.phytochem.2014.10.003
[69] MARTI G, ERB M, BOCCARD J, et al. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots [J]. Plant, Cell & Environment, 2013, 36(3): 621-639.
[70] CARVALHAIS L C, DENNIS P G, FEDOSEYENKO D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency [J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1): 3-11. doi: 10.1002/jpln.201000085
[71] TIAN L Y, SHEN J P, SUN G X, et al. Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L. ) rhizosphere grown in contaminated mine soil [J]. Environmental Science & Technology, 2020, 54(20): 13137-13146.
[72] ZHI Y, ZHOU Q X, LENG X, et al. Mechanism of remediation of cadmium-contaminated soil with low-energy plant snapdragon [J]. Frontiers in Chemistry, 2020, 8: 222. doi: 10.3389/fchem.2020.00222
[73] HU X G, ZHOU Q X. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation [J]. Scientific Reports, 2014, 4: 3782. doi: 10.1038/srep03782
[74] ZHAO L J, ZHANG H L, WHITE J C, et al. Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways [J]. Environmental Science:Nano, 2019, 6(6): 1716-1727. doi: 10.1039/C9EN00137A
[75] ZHANG H L, DU W C, PERALTA-VIDEA J R, et al. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress [J]. Environmental Science & Technology, 2018, 52(14): 8016-8026.
[76] LV J T, ZHANG S Z, WANG S S, et al. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides [J]. Environmental Science & Technology, 2016, 50(5): 2328-2336.
[77] AHARONI A, RIC de VOS C H, VERHOEVEN H A, et al. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry [J]. Omics:A Journal of Integrative Biology, 2002, 6(3): 217-234. doi: 10.1089/15362310260256882
[78] KAPLAN D I, XU C, HUANG S, et al. Unique organic matter and microbial properties in the rhizosphere of a wetland soil [J]. Environmental Science & Technology, 2016, 50(8): 4169-4177.
[79] 宋爱华, 李文, 韩飞. 傅立叶变换离子回旋共振质谱法在药学领域的应用进展 [J]. 沈阳药科大学学报, 2017, 34(4): 350-356. doi: 10.14066/j.cnki.cn21-1349/r.2017.04.014 SONG A H, LI W, HAN F. Application progress of Fourier transform ion cyclotron resonance mass spectrometer(FT-ICR MS) in the field of pharmaceutical research [J]. Journal of Shenyang Pharmaceutical University, 2017, 34(4): 350-356(in Chinese). doi: 10.14066/j.cnki.cn21-1349/r.2017.04.014
[80] LOHSE M, BLASER S R G A, VETTERLEIN D, et al. Online nano solid phase extraction Fourier-transform ion cyclotron resonance mass spectrometry workflow to analyze small scale gradients of soil solution organic matter in the rhizosphere [J]. Analytical Chemistry, 2020, 92(15): 10442-10449. doi: 10.1021/acs.analchem.0c00946
[81] DWIVEDI P, WU P Y, KLOPSCH S J, et al. Metabolic profiling by ion mobility mass spectrometry (IMMS) [J]. Metabolomics, 2008, 4(1): 63-80. doi: 10.1007/s11306-007-0093-z
[82] ASTARITA G, PAGLIA G. Ion-mobility mass spectrometry in metabolomics and lipidomics[J]. LCGC North Am. 2015, 32 (9): 702-709.
[83] PANDEY A, MANN M. Proteomics to study genes and genomes [J]. Nature, 2000, 405(6788): 837-846. doi: 10.1038/35015709
[84] BHARGAVA P, KHAN M, VERMA A, et al. Plant Microbe Interface[M]. Cham: Springer International Publishing, 2019: 271-289.
[85] REHMAN A, IJAZ M, MAZHAR K, et al. Microbiome in plant health and disease//KUMAR V. (Ed. ), Microbiome in plant health and disease[M]. Singapore: Springer Nature, 2019: 507-534.
[86] BELL T H, JOLY S, PITRE F E, et al. Increasing phytoremediation efficiency and reliability using novel omics approaches [J]. Trends in Biotechnology, 2014, 32(5): 271-280. doi: 10.1016/j.tibtech.2014.02.008
[87] BULGARELLI D, ROTT M, SCHLAEPPI K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J]. Nature, 2012, 488(7409): 91-95. doi: 10.1038/nature11336
[88] LUNDBERG D S, LEBEIS S L, PAREDES S H, et al. Defining the core Arabidopsis thaliana root microbiome [J]. Nature, 2012, 488(7409): 86-90. doi: 10.1038/nature11237
[89] MENDES L W, KURAMAE E E, NAVARRETE A A, et al. Taxonomical and functional microbial community selection in soybean rhizosphere [J]. The ISME Journal, 2014, 8(8): 1577-1587. doi: 10.1038/ismej.2014.17
[90] TURNER T R, RAMAKRISHNAN K, WALSHAW J, et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants [J]. The ISME Journal, 2013, 7(12): 2248-2258. doi: 10.1038/ismej.2013.119
[91] NEWMAN M M, LORENZ N, HOILETT N, et al. Changes in rhizosphere bacterial gene expression following glyphosate treatment [J]. Science of the Total Environment, 2016, 553: 32-41. doi: 10.1016/j.scitotenv.2016.02.078
[92] EL AMRANI A, DUMAS A S, WICK L Y, et al. “omics” insights into PAH degradation toward improved green remediation biotechnologies [J]. Environmental Science & Technology, 2015, 49(19): 11281-11291.
[93] ALZUBAIDY H, ESSACK M, MALAS T B, et al. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the red sea [J]. Gene, 2016, 576(2): 626-636. doi: 10.1016/j.gene.2015.10.032
[94] BHATTACHARYYA P, ROY K S, DAS M, et al. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach [J]. Science of the Total Environment, 2016, 542: 886-898. doi: 10.1016/j.scitotenv.2015.10.154
[95] PASCUAL J, BLANCO S, GARCÍA-LÓPEZ M, et al. Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches [J]. PLoS One, 2016, 11(1): e0146558. doi: 10.1371/journal.pone.0146558
[96] DUBEY R K, TRIPATHI V, PRABHA R, et al. Metatranscriptomics and metaproteomics for microbial communities profiling//Unravelling the Soil Microbiome. Springer Briefs in Environmental Science[M]. Springer, 2020: 51-60.
[97] de MENEZES A, CLIPSON N, DOYLE E. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil [J]. Environmental Microbiology, 2012, 14(9): 2577-2588. doi: 10.1111/j.1462-2920.2012.02781.x
[98] YERGEAU E, TREMBLAY J, JOLY S, et al. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome [J]. The ISME Journal, 2018, 12(3): 869-884. doi: 10.1038/s41396-017-0018-4
[99] PAGÉ A P, YERGEAU É, GREER C W. Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons [J]. PLoS One, 2015, 10(7): e0132062. doi: 10.1371/journal.pone.0132062
[100] HELBLING D E, ACKERMANN M, FENNER K, et al. The activity level of a microbial community function can be predicted from its metatranscriptome [J]. The ISME Journal, 2012, 6(4): 902-904. doi: 10.1038/ismej.2011.158
[101] ABRAM F, GUNNIGLE E, O'FLAHERTY V. Optimisation of protein extraction and 2-DE for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms [J]. Electrophoresis, 2009, 30(23): 4149-4151. doi: 10.1002/elps.200900474
[102] WILMES P, BOND P L. The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms [J]. Environmental Microbiology, 2004, 6(9): 911-920. doi: 10.1111/j.1462-2920.2004.00687.x
[103] TAYLOR E B, WILLIAMS M A. Microbial protein in soil: Influence of extraction method and C amendment on extraction and recovery [J]. Microbial Ecology, 2010, 59(2): 390-399. doi: 10.1007/s00248-009-9593-x
[104] WANG H B, ZHANG Z X, LI H, et al. Characterization of metaproteomics in crop rhizospheric soil [J]. Journal of Proteome Research, 2010, 10(3): 932-940.
[105] WU L K, WANG H B, ZHANG Z X, et al. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil [J]. PLoS One, 2011, 6(5): e20611. doi: 10.1371/journal.pone.0020611
[106] HULTMAN J, WALDROP M P, MACKELPRANG R, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes [J]. Nature, 2015, 521(7551): 208-212. doi: 10.1038/nature14238
[107] WILMES P, HEINTZ-BUSCHART A, BOND P L. A decade of metaproteomics: Where we stand and what the future holds [J]. Proteomics, 2015, 15(20): 3409-3417. doi: 10.1002/pmic.201500183
[108] SCHNEIDER T, KEIBLINGER K M, SCHMID E, et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions [J]. ISME Journal, 2012, 6(9): 1749-1762. doi: 10.1038/ismej.2012.11
[109] BAO Z H, OKUBO T, KUBOTA K, et al. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants [J]. Applied and Environmental Microbiology, 2014, 80(16): 5043-5052. doi: 10.1128/AEM.00969-14
[110] KNIEF C, DELMOTTE N, CHAFFRON S, et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice [J]. The ISME Journal, 2012, 6(7): 1378-1390. doi: 10.1038/ismej.2011.192
[111] ZAMPIERI E, CHIAPELLO M, DAGHINO S, et al. Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles [J]. Scientific Reports, 2016, 6: 25773. doi: 10.1038/srep25773
[112] CHOUREY K, JANSSON J, VERBERKMOES N, et al. Direct cellular Lysis/protein extraction protocol for soil metaproteomics [J]. Journal of Proteome Research, 2010, 9(12): 6615-6622. doi: 10.1021/pr100787q
[113] NAKAYASU E S, NICORA C D, SIMS A C, et al. MPLEx: a robust and universal protocol for single-sample integrative proteomic, metabolomic, and lipidomic analyses [J]. mSystems, 2016, 1(3): e00043-e00016.
[114] ELSCHENBROICH S, IGNATCHENKO V, SHARMA P, et al. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: Application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells [J]. Journal of Proteome Research, 2009, 8(10): 4860-4869. doi: 10.1021/pr900318k
[115] YANG F, SHEN Y F, CAMP D G, et al. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis [J]. Expert Review of Proteomics, 2012, 9(2): 129-134. doi: 10.1586/epr.12.15
[116] WIESE S, REIDEGELD K A, MEYER H E, et al. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research [J]. Proteomics, 2007, 7(3): 340-350. doi: 10.1002/pmic.200600422
[117] THOMPSON A, SCHÄFER J, KUHN K, et al. Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS [J]. Analytical Chemistry, 2003, 75(8): 1895-1904. doi: 10.1021/ac0262560
[118] JEHMLICH N, SCHMIDT F, TAUBERT M, et al. Protein-based stable isotope probing [J]. Nature Protocols, 2010, 5(12): 1957-1966. doi: 10.1038/nprot.2010.166
[119] MOON S, CHANDRAN A K N, GHO Y S, et al. Integrated omics analysis of root-preferred genes across diverse rice varieties including Japonica and indica cultivars [J]. Journal of Plant Physiology, 2018, 220: 11-23. doi: 10.1016/j.jplph.2017.10.003
[120] ALLEN WHITE R, BORKUM M I, RIVAS-UBACH A, et al. From data to knowledge: The future of multi-omics data analysis for the rhizosphere [J]. Rhizosphere, 2017, 3: 222-229. doi: 10.1016/j.rhisph.2017.05.001
[121] LARSEN P E, SREEDASYAM A, TRIVEDI G, et al. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction [J]. Frontiers in Plant Science, 2016, 6: 1061.
[122] BERSANELLI M, MOSCA E, REMONDINI D, et al. Methods for the integration of multi-omics data: Mathematical aspects [J]. BMC Bioinformatics, 2016, 17(Suppl 2): 15.
[123] de KEERSMAECKER S C J, THIJS I M V, VANDERLEYDEN J, et al. Integration of omics data: How well does it work for bacteria? [J]. Molecular Microbiology, 2006, 62(5): 1239-1250. doi: 10.1111/j.1365-2958.2006.05453.x
[124] HAAS R, ZELEZNIAK A, IACOVACCI J, et al. Designing and interpreting ‘multi-omic’ experiments that may change our understanding of biology [J]. Current Opinion in Systems Biology, 2017, 6: 37-45. doi: 10.1016/j.coisb.2017.08.009
[125] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: The microbial ecology of the rhizosphere [J]. Nature Reviews Microbiology, 2013, 11(11): 789-799. doi: 10.1038/nrmicro3109
[126] VANDENBYGAARTA J, ALLENO B. Experiment design to achieve desired statistical power [J]. Canadian Journal of Soil Science, 2011, 91: 309-310. doi: 10.4141/cjss2010-068
[127] ROUDIER P, RITCHIE A, HEDLEY C, et al. The rise of information science: a changing landscape for soil science[R]. IOP Conference Series: Earth and Environmental Science, 2015.
[128] GE Y, SHEN C C, WANG Y, et al. Carbonaceous nanomaterials have higher effects on soybean rhizosphere prokaryotic communities during the reproductive growth phase than during vegetative growth [J]. Environmental Science & Technology, 2018, 52(11): 6636-6646.