[1] NIEUWENHUIJSEN M J, TOLEDANO M B, EATON N E, et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: A review [J]. Occupational and Environmental Medicine, 2000, 57(2): 73-85. doi: 10.1136/oem.57.2.73
[2] RICHARDSON S D, POSTIGO C. Drinking water disinfection by-products[M]//The Handbook of Environmental Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 93-137.
[3] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1/2/3): 178-242.
[4] 王志健, 胡霞林, 尹大强. 藻源有机质表征及消毒副产物生成潜能研究进展 [J]. 环境化学, 2021, 40(10): 2979-2991. doi: 10.7524/j.issn.0254-6108.2021033001 WANG Z J, HU X L, YIN D Q. Characterization and formation potential of disinfection by-products of algal organic matter: The critical review [J]. Environmental Chemistry, 2021, 40(10): 2979-2991(in Chinese). doi: 10.7524/j.issn.0254-6108.2021033001
[5] WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review [J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021
[6] WRIGHT J M, EVANS A, KAUFMAN J A, et al. Disinfection by-product exposures and the risk of specific cardiac birth defects [J]. Environmental Health Perspectives, 2017, 125(2): 269-277. doi: 10.1289/EHP103
[7] LI X F, MITCH W A. Drinking water disinfection byproducts (DBPs) and human health effects: Multidisciplinary challenges and opportunities [J]. Environmental Science & Technology, 2018, 52(4): 1681-1689.
[8] 刘晗, 邓琳. 饮用水中卤代硝基甲烷的分布特点、来源及毒性研究进展 [J]. 环境化学, 2022, 41(4): 1182-1192. doi: 10.7524/j.issn.0254-6108.2020112801 LIU H, DENG L. Research progress on distribution characteristics, source and toxicity of halonitromethanes in drinking water [J]. Environmental Chemistry, 2022, 41(4): 1182-1192(in Chinese). doi: 10.7524/j.issn.0254-6108.2020112801
[9] RICHARDSON S D, KIMURA S Y. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2020, 92(1): 473-505. doi: 10.1021/acs.analchem.9b05269
[10] RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2014, 86(6): 2813-2848. doi: 10.1021/ac500508t
[11] YANG M T, ZHANG X R. Current trends in the analysis and identification of emerging disinfection byproducts [J]. Trends in Environmental Analytical Chemistry, 2016, 10: 24-34. doi: 10.1016/j.teac.2016.03.002
[12] KOPFLER F C, RINGHAND H P, COLEMAN W E, et al. Reactions of chlorine in drinking water, with humic acids and in vivo// Water Chlorination: Chemistry, Environmental Impact and Health Effects[M]. Chelsea, MI: Lewis Publishers, 1984: 161-173.
[13] ZHANG X R, MINEAR R A. Formation, adsorption and separation of high molecular weight disinfection byproducts resulting from chlorination of aquatic humic substances [J]. Water Research, 2006, 40(2): 221-230. doi: 10.1016/j.watres.2005.10.024
[14] ZHANG X R, MINEAR R A, BARRETT S E. Characterization of high molecular weight disinfection byproducts from chlorination of humic substances with/without coagulation pretreatment using UF-SEC-ESI-MS/MS [J]. Environmental Science & Technology, 2005, 39(4): 963-972.
[15] RICHARDSON S D. The role of GC-MS and LC-MS in the discovery of drinking water disinfection by-products [J]. Journal of Environmental Monitoring, 2002, 4(1): 1-9. doi: 10.1039/b105578j
[16] ZHOU X T, MENG X J, CHENG L M, et al. Development and application of an MS ALL-based approach for the quantitative analysis of linear polyethylene glycols in rat plasma by liquid chromatography triple-quadrupole/time-of-flight mass spectrometry [J]. Analytical Chemistry, 2017, 89(10): 5193-5200. doi: 10.1021/acs.analchem.6b04058
[17] PAN C S, XU S Y, ZHOU H J, et al. Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS [J]. Analytical and Bioanalytical Chemistry, 2007, 387(1): 193-204. doi: 10.1007/s00216-006-0905-4
[18] KARAS M, BACHMANN D, BAHR U, et al. Matrix-assisted ultraviolet laser desorption of non-volatile compounds [J]. International Journal of Mass Spectrometry and Ion Processes, 1987, 78: 53-68. doi: 10.1016/0168-1176(87)87041-6
[19] TANAKA K, WAKI H, IDO Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 1988, 2(8): 151-153. doi: 10.1002/rcm.1290020802
[20] BALLATORE M B, BETTIOL M D R, VANDEN BRABER N L, et al. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin [J]. Food Chemistry, 2020, 319: 126472. doi: 10.1016/j.foodchem.2020.126472
[21] HEILBRONNER S, FOSTER T J. Staphylococcus lugdunensis: A skin commensal with invasive pathogenic potential [J]. Clinical Microbiology Reviews, 2020, 34(2): e00205-e00220.
[22] BŁAŻEK K, BENEŠ H, WALTEROVÁ Z, et al. Synthesis and structural characterization of bio-based bis(cyclic carbonate)s for the preparation of non-isocyanate polyurethanes [J]. Polymer Chemistry, 2021, 12(11): 1643-1652. doi: 10.1039/D0PY01576H
[23] NICOLAU R, LELOUP M, LACHASSAGNE D, et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization [J]. Talanta, 2015, 136: 102-107. doi: 10.1016/j.talanta.2015.01.011
[24] NAVALON S, ALVARO M, ALCAINA I, et al. Multi-method characterization of DOM from the Turia river (Spain) [J]. Applied Geochemistry, 2010, 25(11): 1632-1643. doi: 10.1016/j.apgeochem.2010.08.011
[25] DREISEWERD K, MÜTHING J, ROHLFING A, et al. Analysis of gangliosides directly from thin-layer chromatography plates by infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry with a glycerol matrix [J]. Analytical Chemistry, 2005, 77(13): 4098-4107. doi: 10.1021/ac048373w
[26] RANKIN K, MABURY S A. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer [J]. Environmental Science & Technology, 2015, 49(10): 6093-6101.
[27] KOOIJMAN P C, KOK S J, WEUSTEN J J A M, et al. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: A novel statistical approach for quality scoring [J]. Analytica Chimica Acta, 2016, 919: 1-10. doi: 10.1016/j.aca.2016.03.031
[28] KIMURA S Y, CUTHBERTSON A A, BYER J D, et al. The DBP exposome: Development of a new method to simultaneously quantify priority disinfection by-products and comprehensively identify unknowns [J]. Water Research, 2019, 148: 324-333. doi: 10.1016/j.watres.2018.10.057
[29] MCCRADY M H. Standard methods for the examination of water and waste-water (12th ed. ) [J]. American Journal of Public Health and the Nations Health, 1966, 56(4): 684.
[30] WEI Y Y, LIU Y, MA L M, et al. Speciation and formation of iodinated trihalomethane from microbially derived organic matter during the biological treatment of micro-polluted source water [J]. Chemosphere, 2013, 92(11): 1529-1535. doi: 10.1016/j.chemosphere.2013.04.019
[31] ARTIFON V, ZANARDI-LAMARDO E, FILLMANN G. Aquatic organic matter: Classification and interaction with organic microcontaminants [J]. Science of the Total Environment, 2019, 649: 1620-1635. doi: 10.1016/j.scitotenv.2018.08.385
[32] LIU J L, LI X Y. Biodegradation and biotransformation of wastewater organics as precursors of disinfection byproducts in water [J]. Chemosphere, 2010, 81(9): 1075-1083. doi: 10.1016/j.chemosphere.2010.09.041
[33] ZHANG Q, LIU B, LIU Y. Effect of ozone on algal organic matters as precursors for disinfection by-products production [J]. Environmental Technology, 2014, 35(14): 1753-1759. doi: 10.1080/09593330.2014.881422
[34] HONG H C, MAZUMDER A, WONG M H, et al. Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition [J]. Water Research, 2008, 42(20): 4941-4948. doi: 10.1016/j.watres.2008.09.019
[35] CHEN X G, KONG L, SU X Y, et al. Integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for isolation and identification of compounds in Psoralea corylifolia [J]. Journal of Chromatography A, 2005, 1089(1/2): 87-100.
[36] CHEN X G, HU L H, SU X Y, et al. Separation and detection of compounds in Honeysuckle by integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40(3): 559-570. doi: 10.1016/j.jpba.2005.07.043
[37] KRISTIANA I, TAN J, JOLL C A, et al. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter [J]. Water Research, 2013, 47(2): 535-546. doi: 10.1016/j.watres.2012.10.014
[38] ALMASOUD N, CORREA E, TRIVEDI D K, et al. Fractional factorial design of MALDI-TOF-MS sample preparations for the optimized detection of phospholipids and acylglycerols [J]. Analytical Chemistry, 2016, 88(12): 6301-6308. doi: 10.1021/acs.analchem.6b00512
[39] POSTIGO C, ANDERSSON A, HARIR M, et al. Unraveling the chemodiversity of halogenated disinfection by-products formed during drinking water treatment using target and non-target screening tools [J]. Journal of Hazardous Materials, 2021, 401: 123681. doi: 10.1016/j.jhazmat.2020.123681
[40] CAO D, HUANG H G, HU M, et al. Comprehensive characterization of natural organic matter by MALDI- and ESI-Fourier transform ion cyclotron resonance mass spectrometry [J]. Analytica Chimica Acta, 2015, 866: 48-58. doi: 10.1016/j.aca.2015.01.051
[41] SROKA-BARTNICKA A, CIESIELSKI W, LIBISZOWSKI J, et al. Complementarity of solvent-free MALDI TOF and solid-state NMR spectroscopy in spectral analysis of polylactides [J]. Analytical Chemistry, 2010, 82(1): 323-328. doi: 10.1021/ac9020006
[42] WANG J Q, ZHAO J, NIE S P, et al. Rapid profiling strategy for oligosaccharides and polysaccharides by MALDI TOF mass spectrometry [J]. Food Hydrocolloids, 2022, 124: 107237. doi: 10.1016/j.foodhyd.2021.107237
[43] KWON C, LEE S, JUNG S. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric behavior of succinoglycan monomers, dimers, and trimers isolated from Sinorhizobium meliloti 1021 [J]. Carbohydrate Research, 2011, 346(14): 2308-2314. doi: 10.1016/j.carres.2011.07.023
[44] HUNG W T, WANG S H, CHEN Y T, et al. MALDI-TOF MS analysis of native and permethylated or benzimidazole-derivatized polysaccharides [J]. Molecules (Basel, Switzerland), 2012, 17(5): 4950-4961. doi: 10.3390/molecules17054950
[45] WETZEL S J, GUTTMAN C M, FLYNN K M, et al. Significant parameters in the optimization of MALDI-TOF-MS for synthetic polymers [J]. Journal of the American Society for Mass Spectrometry, 2006, 17(2): 246-252. doi: 10.1016/j.jasms.2005.11.007
[46] WETZEL S J, GUTTMAN C M, GIRARD J E. The influence of matrix and laser energy on the molecular mass distribution of synthetic polymers obtained by MALDI-TOF-MS [J]. International Journal of Mass Spectrometry, 2004, 238(3): 215-225. doi: 10.1016/j.ijms.2004.04.019
[47] LIN Y, HUANG X, LIU Q, et al. Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media [J]. Talanta, 2020, 208: 120478. doi: 10.1016/j.talanta.2019.120478
[48] PARK E, YANG H, KIM Y, et al. Analysis of oligosaccharides in beer using MALDI-TOF-MS [J]. Food Chemistry, 2012, 134(3): 1658-1664. doi: 10.1016/j.foodchem.2012.03.069
[49] LING L, XIAO C S, MA Y, et al. 2-phenyl-3-(p-aminophenyl) acrylonitrile: A reactive matrix for sensitive and selective analysis of glycans by MALDI-MS [J]. Analytical Chemistry, 2019, 91(14): 8801-8807. doi: 10.1021/acs.analchem.9b01434
[50] LING L, JIANG L Y, CHEN Q R, et al. Rapid and accurate profiling of oligosaccharides in beer by using a reactive matrix via MALDI-TOF MS [J]. Food Chemistry, 2021, 340: 128208. doi: 10.1016/j.foodchem.2020.128208
[51] HAO J, LU J J, XU N Y, et al. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system [J]. Carbohydrate Polymers, 2016, 146: 238-244. doi: 10.1016/j.carbpol.2016.03.040
[52] KATO Y, MATSUO R, ISOGAI A. Oxidation process of water-soluble starch in TEMPO-mediated system [J]. Carbohydrate Polymers, 2003, 51(1): 69-75. doi: 10.1016/S0144-8617(02)00159-5