[1] |
ZOU L Z, ZHOU M, LUO Z W, et al. Selection and synthesization of multi-carbon source composites to enhance simultaneous nitrification-denitrification in treating low C/N wastewater[J]. Chemosphere, 2022, 288: 132567. doi: 10.1016/j.chemosphere.2021.132567
|
[2] |
柴蓓蓓, 曹锋锋, 鞠恺, 等. 不同碳源条件生物滤池深度脱氮效能及其经济性[J]. 水处理技术, 2021, 47(5): 83-88.
|
[3] |
司文曦, 李辰, 马庆. 污水处理厂强化生物脱氮措施探析[J]. 中国给水排水, 2015, 31(16): 21-25.
|
[4] |
AGNE K B; NEVIN Y. Evaluation of sludge reduction in an oxic-settling-anoxic system operated with step feeding regime for nutrient removal and fed with real domestic wastewater[J]. Journal of Environmental Management, 2019, 243: 385-392.
|
[5] |
冯云刚, 张飞, 冯凯, 等. 消氧强化反硝化脱氮 AAO 生物池在合肥某污水厂的应用[J]. 中国给水排水, 2021, 37(14): 80-84.
|
[6] |
WANG Q B, CHEN Q W. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater[J]. Journal of Environmental Sciences, 2016, 39: 175-183. doi: 10.1016/j.jes.2015.10.012
|
[7] |
谢小明. 精确曝气控制在污水处理厂中的应用和探索[J]. 中国给水排水, 2016, 32(6): 24-27.
|
[8] |
王启镔, 宫徽, 朱越, 等. SBR运行模式对市政污水脱氮除磷性能的影响分析[J]. 环境科学学报, 2020, 40(4): 1167-1173.
|
[9] |
WANG Q B, CHEN Q W, CHEN J. Optimizing external carbon source addition in domestics wastewater treatment based on online sensoring data and a numerical model[J]. Water Science and Technology, 2017, 75(11): 2716-2725. doi: 10.2166/wst.2017.128
|
[10] |
李子锋. 污水处理生物脱氮除磷影响因素及对策的研究[J]. 皮革制作与环保科技, 2021, 2(5): 101-102.
|
[11] |
王启镔, 苑泉, 宫徽, 等. SBR系统在低浓度污水条件下培养好氧颗粒污泥的特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052.
|
[12] |
FENG X C, BAO X, CHE L, et al. Enhance biological nitrogen and phosphorus removal in wastewater treatment process by adding food waste fermentation liquid as external carbon source[J]. Biochemical Engineering Journal, 2021, 165: 107811. doi: 10.1016/j.bej.2020.107811
|
[13] |
MANNINA G, CAPODICI M, COSENZA A, et al. Carbon and nutrient biological removal in a University of Cape Town membrane bioreactor: Analysis of a pilot plant operated under two different C/N ratios[J]. Chemical Engineering Journal, 2016, 296: 289-299. doi: 10.1016/j.cej.2016.03.114
|
[14] |
陈浬, 周健, 窦艳艳. 碳源种类对原位生物解偶联污泥减量系统效能影响[J]. 环境工程学报, 2015, 9(3): 1131-1135.
|
[15] |
张怡芳, 吉芳英, 姜蕾. 固液碳源对反硝化脱氮及污泥产量影响研究[J]. 水处理技术, 2020, 46(4): 121-124,132.
|
[16] |
赵国强, 李亚, 武双, 等. 基于低成本碳源微生物合成聚羟基脂肪酸酯的研究进展[J]. 高分子通报, 2020(11): 22-30.
|
[17] |
CANIANI D, CAIVANO M, PASCALE R, et al. CO2 and N2O from water resource recovery facilities: Evaluation of emissions from biological treatment, settling, disinfection, and receiving water body[J]. Science of the Total Environment, 2019, 648: 1130-1140. doi: 10.1016/j.scitotenv.2018.08.150
|
[18] |
王启镔, 龚春辰, 魏彬, 等. 季节性气候变化下污水处理厂性能及污泥特性分析[J]. 给水排水, 2021, 47(3): 49-54.
|
[19] |
陈清. 污水处理厂进水水质变化对污染物去除效率的影响分析[J]. 水资源开发与管理, 2015(2): 80-84
|
[20] |
王启镔, 李浩, 董旭, 等. 改良型 A2/O 污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665.
|
[21] |
JANSSEN P M J, MEINEMA K, VAN DER ROEST H F, 著. 祝贵兵, 彭永臻, 译. 生物除磷设计与运行手册[ M]. 北京: 中国建筑工业出版社, 2005.
|
[22] |
GONG H, JIN Z Y, WANG Q B, et al. Effects of adsorbent cake layer on membrane fouling during hybrid coagulation/adsorption microfiltration for sewage organic recovery[J]. Chemical Engineering Journal, 2017, 317: 751-757. doi: 10.1016/j.cej.2017.02.122
|
[23] |
JING Z Y, GONG H, WANG K J. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery[J]. Journal of Hazardous Materials, 2015, 283: 824-831. doi: 10.1016/j.jhazmat.2014.10.038
|
[24] |
HENZE M, VAN L M C M, EKAMA A G B D. Biological wastewater treatment: Principles, modelling and design[M]. London: IWA publishing, 2008.
|