[1] |
XIN L, QIN Y, LOU T, et al. Rapid start-up and humification of kitchen waste composting by an innovative biodrying-enhanced process[J]. Chemical Engineering Journal, 2023, 452: 139459. doi: 10.1016/j.cej.2022.139459
|
[2] |
国务院办公厅. 国务院办公厅关于印发“无废城市”建设试点工作方案的通知[J]. 中华人民共和国国务院公报, 2019(4): 5-11.
|
[3] |
KENG Z X, CHONG S, NG C G, et al. Community-scale composting for food waste: a life-cycle assessment-supported case study[J]. Journal of Cleaner Production, 2020, 261: 121220. doi: 10.1016/j.jclepro.2020.121220
|
[4] |
ZHAO L, SU C, WANG A, et al. Evaluation of biochar addition and circulation control strengthening measures on efficiency and microecology of food waste treatment in anaerobic reactor[J]. Journal of Environmental Management, 2021, 297: 113215. doi: 10.1016/j.jenvman.2021.113215
|
[5] |
张虹 李, 彭韵, 杨屏锦, 等. 氨氮对餐厨垃圾厌氧消化性能及微生物群落的影响[J]. 中国环境科学, 2020, 40(8): 3465-3474.
|
[6] |
CHEN Y, XIAO B, CHANG J, et al. Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor[J]. Energy Conversion and Management, 2009, 50(3): 668-673. doi: 10.1016/j.enconman.2008.10.011
|
[7] |
SINHA V, CHAKMA S. Advances in the preparation of hydrogel for wastewater treatment: a concise review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103295. doi: 10.1016/j.jece.2019.103295
|
[8] |
赵媛, 段立磊, 桑亚男, 等. 纤维素基水凝胶的制备及其应用研究进展[J]. 化工技术与开发, 2021, 50(5): 43-48.
|
[9] |
罗惠元, 熊玉竹. 淀粉基吸水凝胶材料研究进展[J]. 化工新型材料, 2021, 49(11): 242-246.
|
[10] |
THAKUR V K, THAKUR M K. Recent advances in green hydrogels from lignin: a review[J]. International Journal of Biological Macromolecules, 2015, 72: 834-847. doi: 10.1016/j.ijbiomac.2014.09.044
|
[11] |
ZHANG X, LIU Y, LU P, et al. Preparation and properties of hydrogel based on sawdust cellulose for environmentally friendly slow release fertilizers[J]. Green Processing and Synthesis, 2020, 9(1): 139-152. doi: 10.1515/gps-2020-0015
|
[12] |
ZHOU T, WANG Y, HUANG S, et al. Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers[J]. Science of the Total Environment, 2018, 615: 422-430. doi: 10.1016/j.scitotenv.2017.09.084
|
[13] |
张玉静, 蒋建国, 王佳明. pH值对餐厨垃圾厌氧发酵产挥发性脂肪酸的影响[J]. 中国环境科学, 2013(4): 680-684.
|
[14] |
WEN P, WU Z, HE Y, et al. Microwave-assisted synthesis of a semi-interpenetrating polymer network slow-release nitrogen fertilizer with water absorbency from cotton stalks[J]. ACS Sustainable Chemistry & Engineering, 2016: 6572-6579.
|
[15] |
WANG S, WANG H, XIANG H, et al. Enhancement of rapid hydrolysis and humification of food waste slurry by synergistically incorporating forward UV365 and persulfate[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108649. doi: 10.1016/j.jece.2022.108649
|
[16] |
温鹏. 基于膨润土的保水型缓释氮肥的制备及其性能研究[D]. 石河子: 石河子大学, 2017.
|
[17] |
POPOV S, ABDEL-FATTAH T, KUMAR S. Hydrothermal treatment for enhancing oil extraction and hydrochar production from oilseeds[J]. Renewable Energy, 2016, 85: 844-853. doi: 10.1016/j.renene.2015.07.048
|
[18] |
GHALY M Y, FARAH J Y, FATHY A M. Enhancement of decolorization rate and COD removal from dyes containing wastewater by the addition of hydrogen peroxide under solar photocatalytic oxidation[J]. Desalination, 2007, 217(1-3): 74-84. doi: 10.1016/j.desal.2007.01.013
|
[19] |
高凤苑, 韦东来, 张鑫, 等. 木薯淀粉水凝胶的制备及表征[J]. 食品工业科技, 2019, 40(6): 49-53+61. doi: 10.13386/j.issn1002-0306.2019.06.009
|
[20] |
周涛. 餐厨垃圾及其厌氧发酵存余物营养成分回收利用机制与关键技术研究[D]. 上海: 同济大学, 2019.
|
[21] |
乔冬玲. 高浓度高剪切环境中淀粉基高吸水树脂的构建及性能研究[D]. 广州: 华南理工大学, 2016.
|
[22] |
POURJAVADI A, BARZEGAR S, MAHDAVINIA G R. MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels[J]. Carbohydrate Polymers, 2006, 66(3): 386-395. doi: 10.1016/j.carbpol.2006.03.013
|
[23] |
刘阳, 张捍民, 杨凤林. 活性污泥中微生物胞外聚合物(EPS)影响膜污染机理研究[J]. 高校化学工程学报, 2008(2): 332-338.
|
[24] |
NIE H, NIE M, WANG L, et al. Evidences of extracellular abiotic degradation of hexadecane through free radical mechanism induced by the secreted phenazine compounds of P-aeruginosa NY3[J]. Water Research, 2018, 139: 434-441. doi: 10.1016/j.watres.2018.02.053
|
[25] |
HUA S, WANG A. Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent[J]. Carbohydrate Polymers, 2009, 75(1): 79-84. doi: 10.1016/j.carbpol.2008.06.013
|
[26] |
ZHANG M, CHENG Z, ZHAO T, et al. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–roly(acrylic acid) superabsorbent hydrogel[J]. Journal of Agricultural and Food Chemistry, 2014, 62(35): 8867-8874. doi: 10.1021/jf5021279
|
[27] |
SAWUT A, YIMIT M, SUN W, et al. Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer[J]. Carbohydrate Polymers, 2014, 101: 231-239. doi: 10.1016/j.carbpol.2013.09.054
|
[28] |
CASTEL D, RICARD A, AUDEBERT R. Swelling of anionic and cationic starch‐based superabsorbents in water and saline solution[J]. Journal of Applied Polymer Science, 1990, 39(1): 11-29. doi: 10.1002/app.1990.070390102
|
[29] |
TALLY M, ATASSI Y. Optimized synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly (acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation[J]. Journal of Polymer Research, 2015, 22(9): 181. doi: 10.1007/s10965-015-0822-3
|
[30] |
LI X, LI Q, SU Y, et al. A novel wheat straw cellulose-based semi-IPNs superabsorbent with integration of water-retaining and controlled-release fertilizers[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 170-179. doi: 10.1016/j.jtice.2015.04.022
|