[1] SUPURAN C T. Structure and function of carbonic anhydrases [J]. The Biochemical Journal, 2016, 473(14): 2023-2032. doi: 10.1042/BCJ20160115
[2] WEST D. Structural modification of human Carbonic anhydrase II (HCAII) and its impact on catalysis[D]. University of Florida, 2012
[3] ALVIZO O, NGUYEN L J, SAVILE C K, et al. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16436-16441. doi: 10.1073/pnas.1411461111
[4] LEE C H, JANG E K, YEON Y J, et al. Stabilization of Bovine carbonic anhydrase II through rational site-specific immobilization [J]. Biochemical Engineering Journal, 2018, 138: 29-36. doi: 10.1016/j.bej.2018.06.019
[5] CUI J D, JIA S R. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: Current development and future challenges [J]. Critical Reviews in Biotechnology, 2015, 35(1): 15-28. doi: 10.3109/07388551.2013.795516
[6] MOLINA-FERNÁNDEZ C, LUIS P. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review [J]. Journal of CO2 Utilization, 2021, 47: 101475. doi: 10.1016/j.jcou.2021.101475
[7] REN S Z, CHEN R X, WU Z F, et al. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion [J]. Colloids and Surfaces B:Biointerfaces, 2021, 204: 111779. doi: 10.1016/j.colsurfb.2021.111779
[8] 梁珊, 宗敏华, 娄文勇. 酶法催化二氧化碳制备高附加值化学品研究进展 [J]. 化学学报, 2019, 77(11): 1099-1114. doi: 10.6023/A19060240 LIANG S, ZONG M H, LOU W Y. Recent advances in enzymatic catalysis for preparation of high value-added chemicals from carbon dioxide [J]. Acta Chimica Sinica, 2019, 77(11): 1099-1114(in Chinese). doi: 10.6023/A19060240
[9] OCHEDI F O, YU J L, YU H, et al. Carbon dioxide capture using liquid absorption methods: A review [J]. Environmental Chemistry Letters, 2021, 19(1): 77-109. doi: 10.1007/s10311-020-01093-8
[10] PEIRCE S, RUSSO M E, PERFETTO R, et al. Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture [J]. Biochemical Engineering Journal, 2018, 138: 1-11. doi: 10.1016/j.bej.2018.06.017
[11] EFFENDI S S W, CHIU C Y, CHANG Y K, et al. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration [J]. International Journal of Biological Macromolecules, 2020, 152: 930-938. doi: 10.1016/j.ijbiomac.2019.11.234
[12] CHAFIK A, EL HASSANI K, ESSAMADI A, et al. Efficient sequestration of carbon dioxide into calcium carbonate using a novel carbonic anhydrase purified from liver of camel (Camelus dromedarius) [J]. Journal of CO2 Utilization, 2020, 42: 101310. doi: 10.1016/j.jcou.2020.101310
[13] MOREL F M M, LAM P J, SAITO M A. Trace metal substitution in marine phytoplankton [J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 491-517. doi: 10.1146/annurev-earth-053018-060108
[14] JENSEN E L, MABERLY S C, GONTERO B. Insights on the functions and ecophysiological relevance of the diverse carbonic anhydrases in microalgae [J]. International Journal of Molecular Sciences, 2020, 21(8): 2922. doi: 10.3390/ijms21082922
[15] BOSE H, SATYANARAYANA T. Utility of thermo-alkali-stable γ-CA from polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic sequestration of CO2 and as a virtual peroxidase [J]. Environmental Science and Pollution Research International, 2017, 24(11): 10869-10884. doi: 10.1007/s11356-017-8739-5
[16] GÜZEL-AKDEMIR Ö, CARRADORI S, GRANDE R, et al. Development of thiazolidinones as fungal carbonic anhydrase inhibitors [J]. International Journal of Molecular Sciences, 2020, 21(8): 2960. doi: 10.3390/ijms21082960
[17] GLADIS A, GUNDERSEN M T, FOSBØL P L, et al. Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology [J]. Chemical Engineering Journal, 2017, 309: 772-786. doi: 10.1016/j.cej.2016.10.056
[18] HOU J, LI X K, KACZMAREK M B, et al. Accelerated CO2 hydration with thermostable Sulfurihydrogenibium azorense carbonic anhydrase-chitin binding domain fusion protein immobilised on chitin support [J]. International Journal of Molecular Sciences, 2019, 20(6): 1494. doi: 10.3390/ijms20061494
[19] HSIEH C J, CHENG J C, HU C J, et al. Entrapment of the fastest known carbonic anhydrase with biomimetic silica and its application for CO2 sequestration [J]. Polymers, 2021, 13(15): 2452. doi: 10.3390/polym13152452
[20] 温欢. 碳酸酐酶杂化纳米花及其PVA/CS凝胶酶膜在CO2转化中应用的基础研究[D]. 天津: 天津科技大学, 2020. WEN H. Basic research on the application of carbonic anhydrase hybrid nanoflower and its PVA/CS hydrogels enzyme membrane in CO2 conversion[D]. Tianjin: Tianjin University of Science & Technology, 2020(in Chinese).
[21] WU Z H, NAN Y, ZHAO Y, et al. Immobilization of carbonic anhydrase for facilitated CO2 capture and separation [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2817-2831. doi: 10.1016/j.cjche.2020.06.002
[22] WEN H, ZHANG L, DU Y J, et al. Bimetal based inorganic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture [J]. Journal of CO2 Utilization, 2020, 39: 101171. doi: 10.1016/j.jcou.2020.101171
[23] REN S Z, JIANG S H, YAN X Y, et al. Challenges and opportunities: Porous supports in carbonic anhydrase immobilization [J]. Journal of CO2 Utilization, 2020, 42: 101305. doi: 10.1016/j.jcou.2020.101305
[24] YING Q, CHEN H, SHAO P J, et al. Core-shell magnetic ZIF-8@Fe3O4-carbonic anhydrase biocatalyst for promoting CO2 absorption into MDEA solution [J]. Journal of CO2 Utilization, 2021, 49: 101565. doi: 10.1016/j.jcou.2021.101565
[25] PEIRCE S, RUSSO M E, ISTICATO R, et al. Structure and activity of magnetic cross-linked enzyme aggregates of bovine carbonic anhydrase as promoters of enzymatic CO2 capture [J]. Biochemical Engineering Journal, 2017, 127: 188-195. doi: 10.1016/j.bej.2017.08.014
[26] 冯慧, 韩娟, 黄文睿, 等. 纳米花型酶-无机杂化固定化酶研究进展 [J]. 化学通报, 2021, 84(12): 1263-1273. doi: 10.14159/j.cnki.0441-3776.2021.12.004 FENG H, HAN J, HUANG W R, et al. Research progress in nanoflower enzyme-inorganic hybrid immobilized enzyme [J]. Chemistry, 2021, 84(12): 1263-1273(in Chinese). doi: 10.14159/j.cnki.0441-3776.2021.12.004
[27] SHAO P J, CHEN H, YING Q, et al. Structure-activity relationship of carbonic anhydrase enzyme immobilized on various silica-based mesoporous molecular sieves for CO2 absorption into a potassium carbonate solution [J]. Energy & Fuels, 2020, 34(2): 2089-2096.
[28] ZHANG S H, LU Y Q, YE X H. Catalytic behavior of carbonic anhydrase enzyme immobilized onto nonporous silica nanoparticles for enhancing CO2 absorption into a carbonate solution [J]. International Journal of Greenhouse Gas Control, 2013, 13: 17-25. doi: 10.1016/j.ijggc.2012.12.010
[29] SHAMNA I, KWAN JEONG S, MARGANDAN B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-siloxane aerogel beads for biomimetic sequestration of CO2 [J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 288-295. doi: 10.1016/j.jiec.2021.05.010
[30] SUN J, WANG C H, WANG Y Z, et al. Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes [J]. Journal of Applied Polymer Science, 2019, 136(29): 47784. doi: 10.1002/app.47784
[31] CHANG S, HE Y, LI Y X, et al. Study on the immobilization of carbonic anhydrases on geopolymer microspheres for CO2 capture [J]. Journal of Cleaner Production, 2021, 316: 128163. doi: 10.1016/j.jclepro.2021.128163
[32] JUN S H, YANG J S, JEON H, et al. Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth [J]. Environmental Science & Technology, 2020, 54(2): 1223-1231.
[33] GE J, LEI J D, ZARE R N. Protein–inorganic hybrid nanoflowers [J]. Nature Nanotechnology, 2012, 7(7): 428-432. doi: 10.1038/nnano.2012.80
[34] XU X Y, KENTISH S E, MARTIN G J O. Direct air capture of CO2 by microalgae with buoyant beads encapsulating carbonic anhydrase [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(29): 9698-9706.
[35] SHARMA T, KUMAR A. Bioprocess development for efficient conversion of CO2 into calcium carbonate using keratin microparticles immobilized Corynebacterium flavescens [J]. Process Biochemistry, 2021, 100: 171-177. doi: 10.1016/j.procbio.2020.10.009
[36] MOON H, KIM S, JO B H, et al. Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization [J]. Journal of CO2 Utilization, 2020, 39: 101172. doi: 10.1016/j.jcou.2020.101172
[37] 刘亚茹. 细胞表面展示碳酸酐酶及其酶学性质研究[D]. 天津: 天津大学, 2020. LIU Y R. Cell surface display of carbonic anhydrase and its enzymology properties[D]. Tianjin: Tianjin University, 2020(in Chinese).
[38] ZHU Y Z, LIU Y R, AI M M, et al. Surface display of carbonic anhydrase on Escherichia coli for CO2 capture and mineralization [J]. Synthetic and Systems Biotechnology, 2021, 7(1): 460-473.
[39] TAN S I, HAN Y L, YU Y J, et al. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase [J]. Process Biochemistry, 2018, 73: 38-46. doi: 10.1016/j.procbio.2018.08.017
[40] REN S Z, FENG Y X, WEN H, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration [J]. International Journal of Biological Macromolecules, 2018, 117: 189-198. doi: 10.1016/j.ijbiomac.2018.05.173
[41] REN S Z, LI C H, TAN Z L, et al. Carbonic Anhydrase@ZIF-8 hydrogel composite membrane with improved recycling and stability for efficient CO2 capture [J]. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3372-3379. doi: 10.1021/acs.jafc.8b06182
[42] 于洋, 刘琦, 吕静, 等. 碳酸酐酶固定及在二氧化碳捕集应用研究进展 [J]. 洁净煤技术, 2021, 27(2): 69-78. doi: 10.13226/j.issn.1006-6772.CCUS20100903 YU Y, LIU Q, LYU J, et al. Research progress on the immobilization of carbonic anhydrase and its application in carbon dioxide capture [J]. Clean Coal Technology, 2021, 27(2): 69-78(in Chinese). doi: 10.13226/j.issn.1006-6772.CCUS20100903
[43] XU Y L, LIN Y Q, CHEW N G P, et al. Biocatalytic PVDF composite hollow fiber membranes for CO2 removal in gas-liquid membrane contactor [J]. Journal of Membrane Science, 2019, 572: 532-544. doi: 10.1016/j.memsci.2018.11.043
[44] ZHANG S H, DU M E, SHAO P J, et al. Carbonic anhydrase enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary amine solution [J]. Environmental Science & Technology, 2018, 52(21): 12708-12716.
[45] DU M E, CHEN H, YE J X, et al. One-pot synthesis of efficient carbonic anhydrase-zeolitic imidazolate framework-8 composite for enhancing CO2 absorption [J]. Journal of CO2 Utilization, 2020, 40: 101211. doi: 10.1016/j.jcou.2020.101211
[46] XU W N, WANG Z Y, CHEN G, et al. Accelerating CO2 absorption in aqueous amine solutions at high temperature with carbonic anhydrase in magnetic nanogels [J]. Catalysis Letters, 2018, 148(7): 1827-1833. doi: 10.1007/s10562-018-2401-9
[47] 费潇瑶. 碳酸酐酶的固定化及其CO2的捕集性能[D]. 大连: 大连理工大学, 2018. FEI X Y. Immobilization of carbonic anhydrase and the performance in CO2 capture[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
[48] FABBRICINO S, PRETE S D, RUSSO M E, et al. In vivo immobilized carbonic anhydrase and its effect on the enhancement of CO2 absorption rate [J]. Journal of Biotechnology, 2021, 336: 41-49. doi: 10.1016/j.jbiotec.2021.06.016
[49] PEIRCE S, PERFETTO R, RUSSO M E, et al. Characterization of technical grade carbonic anhydrase as biocatalyst for CO2 capture in potassium carbonate solutions [J]. Greenhouse Gases:Science and Technology, 2018, 8(2): 279-291. doi: 10.1002/ghg.1738
[50] QI G J, LIU K, HOUSE A L, et al. Laboratory to bench-scale evaluation of an integrated CO2 capture system using a thermostable carbonic anhydrase promoted K2CO3 solvent with low temperature vacuum stripping [J]. Applied Energy, 2018, 209: 180-189. doi: 10.1016/j.apenergy.2017.10.083
[51] SAHOO P C, KUMAR M, SINGH A, et al. Accelerated CO2 capture in hybrid solvent using co-immobilized enzyme/complex on a hetero-functionalized support [J]. Journal of CO2 Utilization, 2017, 21: 77-81. doi: 10.1016/j.jcou.2017.06.019
[52] HU G P, SMITH K H, NICHOLAS N J, et al. Enzymatic carbon dioxide capture using a thermally stable carbonic anhydrase as a promoter in potassium carbonate solvents [J]. Chemical Engineering Journal, 2017, 307: 49-55. doi: 10.1016/j.cej.2016.08.064
[53] REN S Z, WANG Z Y, BILAL M, et al. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2 [J]. International Journal of Biological Macromolecules, 2020, 155: 110-118. doi: 10.1016/j.ijbiomac.2020.03.177
[54] WANG Y Z, LI M F, ZHAO Z P, et al. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions [J]. Journal of Molecular Catalysis B:Enzymatic, 2015, 116: 89-94. doi: 10.1016/j.molcatb.2015.03.014
[55] CHAI M, RAZAVI BAZAZ S, DAIYAN R, et al. Biocatalytic micromixer coated with enzyme-MOF thin film for CO2 conversion to formic acid [J]. Chemical Engineering Journal, 2021, 426: 130856. doi: 10.1016/j.cej.2021.130856
[56] ZHAI T T, WANG C H, GU F J, et al. Dopamine/polyethylenimine-modified silica for enzyme immobilization and strengthening of enzymatic CO2 conversion [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(40): 15250-15257.
[57] ZHANG X N, SHAO W X, CHEN B Q, et al. Cross-linking of carbonic anhydrase and formate dehydrogenase based on amino acid specific recognition: Conversion of carbon dioxide to formic acid [J]. Enzyme and Microbial Technology, 2021, 146: 109763. doi: 10.1016/j.enzmictec.2021.109763
[58] BENÍTEZ-MATEOS A I, SAN SEBASTIAN E, RÍOS-LOMBARDÍA N, et al. Asymmetric reduction of prochiral ketones by using self-sufficient heterogeneous biocatalysts based on NADPH-dependent ketoreductases [J]. Chemistry - A European Journal, 2017, 23(66): 16843-16852. doi: 10.1002/chem.201703475
[59] WANG J, LV Y Q. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule [J]. Chinese Journal of Chemical Engineering, 2021, 29: 317-325. doi: 10.1016/j.cjche.2020.07.042
[60] LI Y, WEN L Y, TAN T W, et al. Sequential co-immobilization of enzymes in metal-organic frameworks for efficient biocatalytic conversion of adsorbed CO2 to formate [J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 394. doi: 10.3389/fbioe.2019.00394
[61] EL-ZAHAB B, DONNELLY D, WANG P. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes [J]. Biotechnology and Bioengineering, 2008, 99(3): 508-514. doi: 10.1002/bit.21584
[62] JI X Y, SU Z G, WANG P, et al. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes [J]. ACS Nano, 2015, 9(4): 4600-4610. doi: 10.1021/acsnano.5b01278
[63] LALANDE J M, TREMBLAY A. Process and a plant for the production of Portland cement clinker. U. S. Patent 6, 908, 507[P]. 2005.
[64] FRADETTE L, LEFEBVRE S, CARLEY J. Demonstration results of enzyme-accelerated CO2 capture [J]. Energy Procedia, 2017, 114: 1100-1109. doi: 10.1016/j.egypro.2017.03.1263
[65] LEIMBRINK M, LIMBERG T, KUNZE A K, et al. Different strategies for accelerated CO2 absorption in packed columns by application of the biocatalyst carbonic anhydrase [J]. Energy Procedia, 2017, 114: 781-794. doi: 10.1016/j.egypro.2017.03.1221