[1] ZHANG Z Y, SONG Y, ZHENG S J, et al. Electro-conversion of carbon dioxide (CO2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: The current status and future perspective [J]. Bioresource Technology, 2019, 279: 339-349. doi: 10.1016/j.biortech.2019.01.145
[2] LIN C B, WU P, LIU Y D, et al. Enhanced biogas production and biodegradation of phenanthrene in wastewater sludge treated anaerobic digestion reactors fitted with a bioelectrode system [J]. Chemical Engineering Journal, 2019, 365: 1-9. doi: 10.1016/j.cej.2019.02.027
[3] PARK J, LEE B, TIAN D, et al. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell [J]. Bioresource Technology, 2018, 247: 226-233. doi: 10.1016/j.biortech.2017.09.021
[4] TIAN T, QIAO S, YU C, et al. Bio-electrochemically assisting low-temperature anaerobic digestion of low-organic strength wastewater [J]. Chemical Engineering Journal, 2018, 335: 657-664. doi: 10.1016/j.cej.2017.11.016
[5] XIAO B Y, CHEN X, HAN Y P, et al. Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells [J]. Renewable Energy, 2018, 115: 1177-1183. doi: 10.1016/j.renene.2017.06.043
[6] XU S Y, ZHANG Y C, LUO L W, et al. Startup performance of microbial electrolysis cell assisted anaerobic digester (MEC-AD) with pre-acclimated activated carbon [J]. Bioresource Technology Reports, 2019, 5: 91-98. doi: 10.1016/j.biteb.2018.12.007
[7] HO D, JENSEN P, BATSTONE D. Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion [J]. Environmental Science & Technology, 2014, 48(11): 6468-6476.
[8] CHEN M, LIU S J, YUAN X F, et al. Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar [J]. Renewable Energy, 2021, 163: 357-367. doi: 10.1016/j.renene.2020.09.006
[9] RAFIEENIA R, PIVATO A, SCHIEVANO A, et al. Dark fermentation metabolic models to study strategies for hydrogen consumers inhibition [J]. Bioresource Technology, 2018, 267: 445-457. doi: 10.1016/j.biortech.2018.07.054
[10] GONZÁLEZ-CABALEIRO R, LEMA J M, RODRÍGUEZ J. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations [J]. PLoS One, 2015, 10(5): e0126739. doi: 10.1371/journal.pone.0126739
[11] VALLINO J J, STEPHANOPOULOS G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction [J]. Biotechnology and Bioengineering, 1993, 41(6): 633-646. doi: 10.1002/bit.260410606
[12] GONZALEZ-GARCIA R A, AISPURO-CASTRO R, SALGADO-MANJARREZ E, et al. Metabolic pathway and flux analysis of H2 production by an anaerobic mixed culture [J]. International Journal of Hydrogen Energy, 2017, 42(7): 4069-4082. doi: 10.1016/j.ijhydene.2017.01.043
[13] GAO H J, DU G C, CHEN J. Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus [J]. World Journal of Microbiology and Biotechnology, 2006, 22(4): 399-408. doi: 10.1007/s11274-005-9047-7
[14] KÖPKE M, HELD C, HUJER S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13087-13092. doi: 10.1073/pnas.1004716107
[15] LESKOVAC V, TRIVIĆ S, PERIČIN D. The three zinc-containing alcohol dehydrogenases from baker's yeast, Saccharomyces cerevisiae [J]. FEMS Yeast Research, 2002, 2(4): 481-494.
[16] KUNJI E R S, ALEKSANDROVA A, KING M S, et al. The transport mechanism of the mitochondrial ADP/ATP carrier [J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2016, 1863(10): 2379-2393. doi: 10.1016/j.bbamcr.2016.03.015
[17] LIU H Z, ZHANG Y R, YANG S X, et al. Introducing electrolysis to enhance anaerobic digestion resistance to acidification [J]. Bioprocess and Biosystems Engineering, 2022, 45(3): 515-525. doi: 10.1007/s00449-021-02675-8
[18] MOJUMDAR A, UPADHYAY A K, RAINA V, et al. A simple and rapid colorimetric method for the estimation of chitosan produced by microbial degradation of chitin waste [J]. Journal of Microbiological Methods, 2019, 158: 66-70. doi: 10.1016/j.mimet.2019.02.001
[19] SHENG W, YANG L, WANG J P, et al. Development of an enzyme-linked immunosorbent assay for the detection of gentamycin residues in animal-derived foods [J]. LWT - Food Science and Technology, 2013, 50(1): 204-209. doi: 10.1016/j.lwt.2012.05.028
[20] CHOI J H, LIM Y T, OH B K. Development of colorimetric enzyme-ball for signal amplification of enzyme-linked immunosorbent assay [J]. Science of Advanced Materials, 2014, 6(11): 2572-2576. doi: 10.1166/sam.2014.2225
[21] VARMA A, PALSSON B O. Metabolic flux balancing: Basic concepts, scientific and practical use [J]. Bio/Technology, 1994, 12(10): 994-998. doi: 10.1038/nbt1094-994
[22] KAUFFMAN K J, PRAKASH P, EDWARDS J S. Advances in flux balance analysis [J]. Current Opinion in Biotechnology, 2003, 14(5): 491-496. doi: 10.1016/j.copbio.2003.08.001
[23] DYKSTRA C M, PAVLOSTATHIS S G. Zero-valent iron enhances biocathodic carbon dioxide reduction to methane [J]. Environmental Science & Technology, 2017, 51(21): 12956-12964.
[24] WANG Y Y, ZHANG Y L, WANG J B, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria [J]. Biomass and Bioenergy, 2009, 33(5): 848-853. doi: 10.1016/j.biombioe.2009.01.007
[25] FACHET M, WITTE C, FLASSIG R J, et al. Reconstruction and analysis of a carbon-core metabolic network for Dunaliella salina [J]. BMC Bioinformatics, 2020, 21(1): 1. doi: 10.1186/s12859-019-3325-0
[26] LEE H S, KRAJMALINIK-BROWN R, ZHANG H S, et al. An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: Microbial ecology evidence [J]. Biotechnology and Bioengineering, 2009, 104(4): 687-697.
[27] CHAGANTI S R, KIM D H, LALMAN J A. Flux balance analysis of mixed anaerobic microbial communities: Effects of linoleic acid (LA) and pH on biohydrogen production [J]. International Journal of Hydrogen Energy, 2011, 36(21): 14141-14152. doi: 10.1016/j.ijhydene.2011.04.161
[28] SI B C, YANG H, HUANG S J, et al. An innovative multistage anaerobic hythane reactor (MAHR): Metabolic flux, thermodynamics and microbial functions [J]. Water Research, 2020, 169: 115216. doi: 10.1016/j.watres.2019.115216
[29] WANG Y L, WANG D B, CHEN F, et al. Effect of triclocarban on hydrogen production from dark fermentation of waste activated sludge [J]. Bioresource Technology, 2019, 279: 307-316. doi: 10.1016/j.biortech.2019.02.016
[30] CHEN Y G, LIU H, ZHENG X, et al. New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process [J]. Applied Energy, 2017, 196: 190-198. doi: 10.1016/j.apenergy.2017.01.100
[31] WANG C, WANG C Q, LIU J Y, et al. Role of magnetite in methanogenic degradation of different substances [J]. Bioresource Technology, 2020, 314: 123720. doi: 10.1016/j.biortech.2020.123720
[32] ZHOU Q, LIU Y, YUAN W Q. Kinetic modeling of butyric acid effects on butanol fermentation by Clostridium saccharoperbutylacetonicum [J]. New Biotechnology, 2020, 55: 118-126. doi: 10.1016/j.nbt.2019.10.004
[33] YU Y, SHAO M Y, LI D, et al. Construction of a carbon-conserving pathway for glycolate production by synergetic utilization of acetate and glucose in Escherichia coli [J]. Metabolic Engineering, 2020, 61: 152-159. doi: 10.1016/j.ymben.2020.06.001
[34] SIKORA A, DETMAN A, MIELECKI D, et al. Searching for metabolic pathways of anaerobic digestion: A useful list of the key enzymes[M]. 2018.
[35] ZHU Y, YANG S T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum [J]. Journal of Biotechnology, 2004, 110(2): 143-157. doi: 10.1016/j.jbiotec.2004.02.006
[36] JO J H, KIM W. Carbon material distribution and flux analysis under varying glucose concentrations in hydrogen-producing Clostridium tyrobutyricum JM1 [J]. Journal of Biotechnology, 2016, 228: 103-111. doi: 10.1016/j.jbiotec.2016.04.051