[1] |
LAN J Q, GOU N, RAHMAN S M, et al. A quantitative toxicogenomics assay for high-throughput and mechanistic genotoxicity assessment and screening of environmental pollutants [J]. Environmental Science & Technology, 2016, 50(6): 3202-3214.
|
[2] |
JONES K C. Persistent organic pollutants (POPs) and related chemicals in the global environment: Some personal reflections [J]. Environmental Science & Technology, 2021, 55(14): 9400-9412.
|
[3] |
LIU Q F, LI L, ZHANG X M, et al. Uncovering global-scale risks from commercial chemicals in air [J]. Nature, 2021, 600(7889): 456-461. doi: 10.1038/s41586-021-04134-6
|
[4] |
ZHANG Y M, CHANG L, YAN N, et al. UV photolysis for accelerating pyridine biodegradation [J]. Environmental Science & Technology, 2014, 48(1): 649-655.
|
[5] |
SUN J Q, XU L, TANG Y Q, et al. Bacterial pyridine hydroxylation is ubiquitous in environment [J]. Applied Microbiology and Biotechnology, 2014, 98(1): 455-464. doi: 10.1007/s00253-013-4818-9
|
[6] |
VASUDEVAN D, DORLEY P J, ZHUANG X. Adsorption of hydroxy pyridines and quinolines at the metal oxide-water interface: Role of tautomeric equilibrium [J]. Environmental Science & Technology, 2001, 35(10): 2006-2013.
|
[7] |
JO Y W, BIN IM W, RHEE J K, et al. Synthesis and antibacterial activity of oxazolidinones containing pyridine substituted with heteroaromatic ring [J]. Bioorganic & Medicinal Chemistry, 2004, 12(22): 5909-5915.
|
[8] |
CHU M J, SUN C Q, CHEN W H, et al. Personal exposure to PM2.5, genetic variants and DNA damage: A multi-center population-based study in Chinese [J]. Toxicology Letters, 2015, 235(3): 172-178. doi: 10.1016/j.toxlet.2015.04.007
|
[9] |
WONDRAK G T, ROBERTS M J, JACOBSON M K, et al. 3-hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells [J]. Journal of Biological Chemistry, 2004, 279(29): 30009-30020. doi: 10.1074/jbc.M404379200
|
[10] |
GOU N, YUAN S H, LAN J Q, et al. A quantitative toxicogenomics assay reveals the evolution and nature of toxicity during the transformation of environmental pollutants [J]. Environmental Science & Technology, 2014, 48(15): 8855-8863.
|
[11] |
GEURTSEN J, de BEEN M, WEERDENBURG E, et al. Genomics and pathotypes of the many faces of Escherichia coli [J]. FEMS Microbiology Reviews, 2022, 46(6): fuac031. doi: 10.1093/femsre/fuac031
|
[12] |
La FARRÉ M, PÉREZ S, KANTIANI L, et al. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment [J]. TrAC Trends in Analytical Chemistry, 2008, 27(11): 991-1007. doi: 10.1016/j.trac.2008.09.010
|
[13] |
SOUAK D, BARREAU M, COURTOIS A, et al. Challenging cosmetic innovation: The skin microbiota and probiotics protect the skin from UV-induced damage [J]. Microorganisms, 2021, 9(5): 936. doi: 10.3390/microorganisms9050936
|
[14] |
PIPES B L, NISHIGUCHI M K. Nocturnal acidification: A coordinating cue in the Euprymna scolopes- Vibrio fischeri symbiosis [J]. International Journal of Molecular Sciences, 2022, 23(7): 3743. doi: 10.3390/ijms23073743
|
[15] |
STEPNIEWSKA K, CHOTIVANICH K, BROCKMAN A, et al. Overestimating resistance in field testing of malaria parasites: Simple methods for estimating high EC50 values using a Bayesian approach [J]. Malaria Journal, 2007, 6: 4. doi: 10.1186/1475-2875-6-4
|
[16] |
AGARWAL A, ALLAMANENI S S R. Sperm DNA damage assessment: A test whose time has come [J]. Fertility and Sterility, 2005, 84(4): 850-853. doi: 10.1016/j.fertnstert.2005.03.080
|
[17] |
JANG J, HUR H G, SADOWSKY M J, et al. Environmental Escherichia coli: Ecology and public health implications-a review [J]. Journal of Applied Microbiology, 2017, 123(3): 570-581. doi: 10.1111/jam.13468
|
[18] |
MOREB E A, HOOVER B, YASEEN A, et al. Managing the SOS response for enhanced CRISPR-cas-based recombineering in E. coli through transient inhibition of host RecA activity [J]. ACS Synthetic Biology, 2017, 6(12): 2209-2218. doi: 10.1021/acssynbio.7b00174
|
[19] |
REIFFERSCHEID G, BUCHINGER S. Cell-based genotoxicity testing: Genetically modified and genetically engineered bacteria in environmental genotoxicology [J]. Advances in Biochemical Engineering/Biotechnology, 2010, 118: 85-111.
|
[20] |
GOU N, GU A Z. A new Transcriptional Effect Level Index (TELI) for toxicogenomics-based toxicity assessment [J]. Environmental Science & Technology, 2011, 45(12): 5410-5417.
|
[21] |
PAPAGIANNAKI D, MEDANA C, BINETTI R, et al. Effect of UV-A, UV-B and UV-C irradiation of glyphosate on photolysis and mitigation of aquatic toxicity [J]. Scientific Reports, 2020, 10: 20247. doi: 10.1038/s41598-020-76241-9
|
[22] |
SKOUTELIS C G, VLASTOS D, KORTSINIDOU M C, et al. Induction of micronuclei by 2-hydroxypyridine in water and elimination of solution genotoxicity by UVC (254 nm) photolysis [J]. Journal of Hazardous Materials, 2011, 197: 137-143. doi: 10.1016/j.jhazmat.2011.09.065
|
[23] |
STAPLETON D R, KONSTANTINOU I K, KARAKITSOU A, et al. 2-Hydroxypyridine photolytic degradation by 254 nm UV irradiation at different conditions [J]. Chemosphere, 2009, 77(8): 1099-1105. doi: 10.1016/j.chemosphere.2009.08.026
|
[24] |
NORTH M, TANDON V J, THOMAS R, et al. Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast [J]. PLoS One, 2011, 6(8): e24205. doi: 10.1371/journal.pone.0024205
|
[25] |
MO C Y, CULYBA M J, SELWOOD T, et al. Inhibitors of LexA autoproteolysis and the bacterial SOS response discovered by an academic-industry partnership [J]. ACS Infectious Diseases, 2018, 4(3): 349-359. doi: 10.1021/acsinfecdis.7b00122
|
[26] |
SCHLACHER K, PHAM P, COX M M, et al. Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation [J]. Chemical Reviews, 2006, 106(2): 406-419. doi: 10.1021/cr0404951
|
[27] |
REN B B, DUAN X W, DING H G. Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster [J]. Journal of Biological Chemistry, 2009, 284(8): 4829-4835. doi: 10.1074/jbc.M807943200
|
[28] |
UCHIDA K, FURUKOHRI A, SHINOZAKI Y, et al. Overproduction of Escherichia coli DNA polymerase DinB (Pol IV) inhibits replication fork progression and is lethal [J]. Molecular Microbiology, 2008, 70(3): 608-622. doi: 10.1111/j.1365-2958.2008.06423.x
|
[29] |
CUBEDDU L, WHITE M F. DNA damage detection by an archaeal single-stranded DNA-binding protein [J]. Journal of Molecular Biology, 2005, 353(3): 507-516. doi: 10.1016/j.jmb.2005.08.050
|
[30] |
LU D, WINDSOR M A, GELLMAN S H, et al. Peptide inhibitors identify roles for SSB C-terminal residues in SSB/exonuclease I complex formation [J]. Biochemistry, 2009, 48(29): 6764-6771. doi: 10.1021/bi900361r
|
[31] |
KESELER I M, COLLADO-VIDES J, SANTOS-ZAVALETA A, et al. EcoCyc: A comprehensive database of Escherichia coli biology [J]. Nucleic Acids Research, 2011, 39(Suppl_1): D583-D590.
|
[32] |
CHRISTMAN M F, STORZ G, AMES B N. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(10): 3484-3488. doi: 10.1073/pnas.86.10.3484
|
[33] |
OCHSNER U A, VASIL M L, ALSABBAGH E, et al. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF [J]. Journal of Bacteriology, 2000, 182(16): 4533-4544. doi: 10.1128/JB.182.16.4533-4544.2000
|
[34] |
KAKU N, HIBINO T, TANAKA Y, et al. Effects of overexpression of Escherichia coli katE and bet genes on the tolerance for salt stress in a freshwater Cyanobacterium Synechococcus sp. PCC 7942 [J]. Plant Science, 2000, 159(2): 281-288. doi: 10.1016/S0168-9452(00)00353-8
|
[35] |
KARIMOV I F, DERYABIN D G, KARIMOVA D N, et al. Evaluation of oxidative metabolism in leukocytes during phagocytosis of Escherichia coli carrying genetic constructs soxS: Lux or katG: Lux [J]. Bulletin of Experimental Biology and Medicine, 2016, 161(2): 276-280. doi: 10.1007/s10517-016-3394-2
|
[36] |
ZHANG M M, QIN Y X, HUANG L X, et al. The role of sodA and sodB in Aeromonas hydrophila resisting oxidative damage to survive in fish macrophages and escape for further infection [J]. Fish & Shellfish Immunology, 2019, 88: 489-495.
|
[37] |
LEE S, MITCHELL R J. Detection of toxic lignin hydrolysate-related compounds using an inaA: LuxCDABE fusion strain [J]. Journal of Biotechnology, 2012, 157(4): 598-604. doi: 10.1016/j.jbiotec.2011.06.018
|