[1] LU J W, ZHANG S, HAI J, et al. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions[J]. Waste Management, 2017, 69: 170-186. doi: 10.1016/j.wasman.2017.04.014
[2] LI J S, XUE Q, WANG P, et al. Leaching characteristics of chlorine from municipal solid waste incineration fly ash by up-flow percolation column tests[J]. Environmental Earth Sciences, 2016, 75(1): 714.
[3] CASTILLO-GIMENEZ J, MONTANES A, PICAZO-TADEO A J. Performance and convergence in municipal waste treatment in the European Union[J]. Waste Management, 2019, 85: 222-231. doi: 10.1016/j.wasman.2018.12.025
[4] LIU Y, CLAVIER K A, SPREADBURT C, et al. Limitations of the TCLP fluid determination step for hazardous waste characterization of US municipal waste incineration ash[J]. Waste Management, 2019, 87: 590-596. doi: 10.1016/j.wasman.2019.02.045
[5] CHEN D, CHRISTENSEN T H. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China[J]. Waste Management & Research, 2010, 28(6): 508-519.
[6] WEI J, LI H, LIU J. Curbing dioxin emissions from municipal solid waste incineration: China's action and global share[J]. Journal of Hazardous Materials, 2022, 5(5): 435.
[7] 孙绍锋, 郝永利, 许涓, 等. 解析《国家危险废物名录》[J]. 中国环境管理, 2013, 5(2): 46-48. doi: 10.3969/j.issn.1674-6252.2013.02.011
[8] 董光辉, 左武, 赵润博, 等. 水泥窑协同处置生活垃圾焚烧飞灰过程中 Pb 和 Zn 的迁移转化特性[J]. 环境工程学报, 2023, 17(1): 250-258. doi: 10.12030/j.cjee.202210043
[9] FAN C C, WANG B, AI H M, et al. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash[J]. Journal of Cleaner Production, 2021, 319: 128-790.
[10] ZHAN X, KIRKELUND G M. Electrodialytic remediation of municipal solid waste incineration fly ash as pre-treatment before geopolymerisation with coal fly ash[J]. Journal of Hazardous Materials, 2021, 8(33): 125-220.
[11] LI J, ZENG M, JI W. Characteristics of the cement-solidified municipal solid waste incineration fly ash[J]. Environmental Science and Pollution Research, 2018, 25(36): 36736-36744. doi: 10.1007/s11356-018-3600-z
[12] VAITKUS A, GRAZULYTE J, SERNAS O, et al. An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers[J]. Construction and Building Materials, 2019, 212(10): 456-466.
[13] KANHAR A H, CHEN S, WANG F. Incineration Fly Ash and Its Treatment to Possible Utilization: A Review[J]. Energies, 2020, 13(24): 66-81.
[14] OKADA T, TOMIKAWA H. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste[J]. Waste Management, 2013, 33(3): 605-614. doi: 10.1016/j.wasman.2012.08.013
[15] MA W, CHEN D, PAN M, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: A comparative study[J]. Journal of Environmental Management, 2019, 247(11): 169-177.
[16] MAEKAWA K, ISHIDA T, KISI T. Multi-scale modeling of concrete performance integrated material and structural mechanics[J]. Journal of Advanced Concrete Technology, 2003, 1(2): 91-126. doi: 10.3151/jact.1.91
[17] TIAN X, RAO F, ESTRELLA R M, et al. Effects of aluminum dosage on gel formation and heavy metals immobilization in alkali-activated MSWI fly ash[J]. Energy & Fuels, 2020, 34(4): 4727-4733.
[18] TLC A, YHC B, MYD A, et al. Stabilization-solidification-utilization of MSWI fly ash coupling CO2 mineralization using a high-gravity rotating packed bed[J]. Waste Management, 2021, 121: 412-421. doi: 10.1016/j.wasman.2020.12.031
[19] WELDEGHEBRIE M F, LOWENSTEIN T K, GARCIA-VEIGAS J, et al. Combined LA-ICP-MS and cryo-SEM-EDS: An improved technique for quantitative analysis of major, minor, and trace elements in fluid inclusions in halite[J]. Chemical Geology, 2020, 551: 19762-119762.
[20] TSICILIS S, CHANIOTAKIS E, KAKALI G, et al. An analysis of the properties of Portland limestone cements and concrete[J]. Cement and Concrete Composites, 2002, 13(2): 371-378.
[21] 国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液法: HJ/T 300—2007[S]. 北京: 中国环境科学出版社, 2007.
[22] WANG J M, JIANG J G, LI D, et al. Removal of Pb and Zn from contaminated soil by different washing methods: the influence of reagents and ultrasound[J]. Environmental Science & Pollution Research, 2015, 22(24): 20084-20091.
[23] ÁLVAREZ M B, GARRIDO M, LISTA A G, et al. Three-way multivariate analysis of metal fractionation results from sediment samples obtained by different sequential extraction procedures and ICP-OES [J]. Analytica Chimica Acta, 2008, 620(1): 34-43.
[24] 中国人民共和国环境保护部, 中华人民共和国国家质量监督检验检疫总局. 生活垃圾填埋场污染控制标准: GB 16889-2008[S]. 北京: 中国环境科学出版社, 2008.
[25] ZHANG Y, CETIN B, LIKOS W J, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash[J]. Fuel, 2016, 184: 815-825. doi: 10.1016/j.fuel.2016.07.089
[26] SHEN Y, WANG H, KIM N S. Ammonia separation of Ni from spent fly ash leach liquor[J]. Minerals & Metallurgical Processing, 2020, 27(3): 154-157.
[27] 童立志, 韦黎华, 王峰, 等. 焚烧飞灰重金属含量及浸出长期变化规律研究[J]. 中国环境科学, 2020, 40(5): 8. doi: 10.3969/j.issn.1000-6923.2020.05.033
[28] WALI A, COLINET G, KSIBI M. Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in sfax, tunisia[J]. Environmental Research Engineering & Management, 2014, 70(4): 14-26.
[29] ZHOU J Z, SIMIAO W, PAN Y, et al. Mercury in municipal solids waste incineration (MSWI) fly ash in China: Chemical speciation and risk assessment[J]. Fuel, 2015, 158: 619-624. doi: 10.1016/j.fuel.2015.05.071
[30] LI H L, FAHEEM M, YAN Y J, et al. Electrokinetic remediation of heavy metals from municipal solid waste incineration fly ash pretreated by nitric acid[J]. Royal Society open science, 2018, 5(8): 2054-5703.
[31] WEIBEL G, EGGENBERGER U, Schlumberger S, et al. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration[J]. Waste Management, 2016, 62: 147.
[32] WANG X, ZHANG L, ZHU K, et al. Distribution and chemical species transition behavior of chlorides in municipal solid waste incineration fly ash during the pressure-assisted sintering treatment [J]. Chemical Engineering Journal, 2021, 415: 128873.
[33] 蒋旭光, 段茵, 吕国钧, 等. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098
[34] XIONG Y, ZHU F, ZHAO L, et al. Heavy metal speciation in various types of fly ash from municipal solid waste incinerator[J]. Journal of Material Cycles & Waste Management, 2014, 16(4): 608-615.
[35] FONT O, QUEROL X, HUGGINS F E, et al. Speciation of major and selected trace elements in IGCC fly ash[J]. Fuel, 2005, 84(11): 1364-1371. doi: 10.1016/j.fuel.2004.06.039
[36] DI B, LI J, FANG W, et al. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash[J]. Environmental Pollution, 2019, 250(JUL.): 68-78.
[37] QUINA M J, BORDADO J C, QUINTA-FERREIRA R M. Treatment and use of air pollution control residues from MSW incineration: An overview[J]. Waste Management, 2008, 28(11): 2097-2121. doi: 10.1016/j.wasman.2007.08.030
[38] WU S, XU Y, SUN J, et al. Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash[J]. Fuel, 2015, 158: 764-769. doi: 10.1016/j.fuel.2015.06.003
[39] CAO H T, BUCEA L, RAY A, et al. The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements[J]. Cement & Concrete Composites, 1997, 19(2): 161-171.
[40] DOMINIC B V, CHAN W P, PHUA Z H, et al. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials[J]. Journal of Hazardous Materials, 2020, 398: 822-906.
[41] SINGH, KANWAR M, KUMAR, et al. Physiochemical and leaching characteristics of fly and bottom ash[J]. Energy sources, 2016, 38(16): 2377-2382. doi: 10.1080/15567036.2015.1057657
[42] 张海军, 于颖, 倪余文. 等. 采用巯基捕收剂稳定化处理垃圾焚烧飞灰中的重金属[J]. 环境科学, 2007(8): 1899-1904. doi: 10.3321/j.issn:0250-3301.2007.08.044
[43] ARNON C, SUPITCHAYA T, PHAKIN C. Thermogravimetric analysis and phase characterizations of Portland fly ash limestone cements[J]. Journal of thermal analysis and calorimetry, 2020, 142(1): 83-90.
[44] 牟陈亚, 何亮, 李清毅, 等. 固化飞灰形状及填埋方式对重金属浸出的影响[J]. 中国环境科学, 2020, 40(4): 8. doi: 10.3969/j.issn.1000-6923.2020.04.027
[45] WANG Y, XU H, CHEN C, et al. Enhanced solidification/stabilization of lead in MSWI fly ash treatment and disposal by gelatinized sticky rice[J]. Environmental Technology, 2019, 42(12): 1-41.
[46] MASSAZZA F, OBERTI G. Durability of pozzolanic cements and Italian experience in mass concrete[J]. Aci Special Publication, 1991, 15(9): 43-55.
[47] RAMOS V, FERNANDES I, SILAVA S, et al. Assessment of the potential reactivity of granitic rocks — Petrography and expansion tests[J]. Cement & Concrete Research, 2016, 86(3): 63-77.
[48] SUN Y, XU C, YANG W, et al. Evaluation of a mixed chelator as heavy metal stabilizer for municipal solid-waste incineration fly ash: Behaviors and mechanisms[J]. Journal- Chinese Chemical Society Taipei, 2018, 34(5): 32-56.