[1] |
BOSU S, RAJAMOHAN N, RAJASIMMAN M. Enhanced remediation of lead (Ⅱ) and cadmium (Ⅱ) ions from aqueous media using porous magnetic nanocomposites: A comprehensive review on applications and mechanism[J]. Environmental Research, 2022, 213: 113720. doi: 10.1016/j.envres.2022.113720
|
[2] |
WEI B, YANG L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China[J]. Microchemical Journal, 2010, 94(2): 99-107. doi: 10.1016/j.microc.2009.09.014
|
[3] |
RAFATI RAHIMZADEH M, RAFATI RAHIMZADEH M, KAZEMI S, et al. Cadmium toxicity and treatment: An update[J]. Caspian Journal of Internal Medicine, 2017, 8(3): 135-145.
|
[4] |
JAKOBSEN M. Electrodialytic removal of cadmium from wastewater sludge[J]. Journal of Hazardous Materials, 2004, 106(2-3): 127-132. doi: 10.1016/j.jhazmat.2003.10.005
|
[5] |
刘红娟, 张慧, 党志, 等. 一株耐镉细菌的分离及其富集Cd的机理[J]. 环境工程学报, 2009, 3(2): 367-371.
|
[6] |
滕云, 游少鸿, 陈梦华, 等. 香蒲根际过滤对水中镉的去除[J]. 环境工程学报, 2017, 11(3): 1545-1548.
|
[7] |
SHEN C, ZHAO Y, LI W, et al. Global profile of heavy metals and semimetals adsorption using drinking water treatment residual[J]. Chemical Engineering Journal, 2019, 372: 1019-1027. doi: 10.1016/j.cej.2019.04.219
|
[8] |
AHMAD S Z N, WAN SALLEH W N, ISMAIL A F, et al. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms[J]. Chemosphere, 2020, 248: 126008. doi: 10.1016/j.chemosphere.2020.126008
|
[9] |
PEI S, WEI Q, HUANG K, et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation[J]. Nature Communications, 2018, 9(1): 1-9. doi: 10.1038/s41467-017-02088-w
|
[10] |
ABU-NADA A, MCKAY G, ABDALA A. Recent advances in applications of hybrid graphene materials for metals removal from wastewater[J]. Nanomaterials, 2020, 595(10): 1-31.
|
[11] |
ZHANG Z, XIAO F, GUO Y, et al. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2227-2233.
|
[12] |
SINGH S, ANIL A G, KHASNABIS S, et al. Sustainable removal of Cr(Ⅵ) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics[J]. Environmental Research, 2022, 203: 111891. doi: 10.1016/j.envres.2021.111891
|
[13] |
TANG J, HUANG Y, GONG Y, et al. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal[J]. Journal of Hazardous Materials, 2016, 316: 151-158. doi: 10.1016/j.jhazmat.2016.05.028
|
[14] |
MADADRANG C J, KIM H Y, GAO G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1186-1193.
|
[15] |
HOU W, XINGZHONG Y, YAN W, et al. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution[J]. Applied Surface Science, 2013, 279: 432-440. doi: 10.1016/j.apsusc.2013.04.133
|
[16] |
LI X, TANG X, FANG Y. Using graphene oxide as a superior adsorbent for the highly efficient immobilization of Cu(Ⅱ) from aqueous solution[J]. Journal of Molecular Liquids, 2014, 199: 237-243. doi: 10.1016/j.molliq.2014.09.020
|
[17] |
SUN Y, YANG S, CHEN Y, et al. Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides: A combined experimental and theoretical study[J]. Environmental Science & Technology, 2015, 49(7): 4255-4262.
|
[18] |
SARKAR A K, BEDIAKO J K, CHOI J, et al. Functionalized magnetic biopolymeric graphene oxide with outstanding performance in water purification[J]. NPG Asia Materials, 2019, 4(11): 1-10.
|
[19] |
CHANG S, ZHANG Q, LU Y, et al. High-efficiency and selective adsorption of organic pollutants by magnetic CoFe2O4/graphene oxide adsorbents: Experimental and molecular dynamics simulation study[J]. Separation and Purification Technology, 2020, 238: 116400. doi: 10.1016/j.seppur.2019.116400
|
[20] |
RAMALINGAM B, PARANDHAMAN T, CHOUDHARY P, et al. Biomaterial functionalized graphene-magnetite nanocomposite: A novel approach for simultaneous removal of anionic dyes and heavy-metal ions[J]. ACS sustainable chemistry & engineering, 2018, 6(5): 6328-6341.
|
[21] |
WANG Y, ZHAO D, FENG S, et al. Ammonium thiocyanate functionalized graphene oxide-supported nanoscale zero-valent iron for adsorption and reduction of Cr(Ⅵ)[J]. Journal of Colloid and Interface Science, 2020, 580: 345-353. doi: 10.1016/j.jcis.2020.07.016
|
[22] |
GUPTA A D, RAWAT K P, BHADAURIA V, et al. Recent trends in the application of modified starch in the adsorption of heavy metals from water: A review[J]. Carbohydr Polym, 2021, 269: 1-66.
|
[23] |
BHAT M A, CHISTI H, SHAH S A. Removal of heavy metal ions from water by cross-linked potato di-starch phosphate polymer[J]. Separation Science and Technology, 2015, 50(12): 1741-1747. doi: 10.1080/01496395.2014.978469
|
[24] |
谢冬冬, 侯英, 黄贵臣, 等. QCM-D研究淀粉和油酸钠与磁铁矿的吸附机理[J]. 中南大学学报(自然科学版), 2019, 50(7): 1514-1520.
|
[25] |
李明恩, 冯庆革, 林海英, 等. 氨基功能氧化石墨烯的制备(DH-GO)及其对废水中Cr(Ⅵ)的去除效果[J]. 环境工程学报, 2022, 16(3): 926-936.
|
[26] |
莫京倚, 张卫民, 陈家鸿, 等. 2种不同碱度钢渣及其负载HAP吸附镉的比较[J]. 环境工程学报, 2019, 13(8): 1800-1808.
|
[27] |
杨月红, 舒敦涛, 宁平. 微波场诱导改性磷石膏吸附Cu2+, Zn2+, Pb2+和Cd2+的动力学与热力学研究[J]. 中南大学学报(自然科学版), 2013, 44(5): 2157-2164.
|
[28] |
肖海梅, 蔡蕾, 张朝晖, 等. 磁性氧化石墨烯/MIL-101(Cr)表面金属离子印迹聚合物制备及其对Cu(Ⅱ)和Pb(Ⅱ)选择性吸附[J]. 应用化学, 2020, 37(9): 1076-1086.
|
[29] |
CUI L, WANG Y, GAO L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb(Ⅱ), Hg(Ⅱ) and Cu(Ⅱ) in water treatment: Adsorption mechanism and separation property[J]. Chemical Engineering Journal, 2015, 281: 1-10. doi: 10.1016/j.cej.2015.06.043
|
[30] |
SAMUEL M S, SHAH S S, BHATTACHARYA J, et al. Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies[J]. International Journal of Biological Macromolecules, 2018, 115: 1142-1150. doi: 10.1016/j.ijbiomac.2018.04.185
|
[31] |
ZHANG Y, WU L, DENG H, et al. Modified graphene oxide composite aerogels for enhanced adsorption behavior to heavy metal ions[J]. Journal of Environmental Chemical Engineering, 2021, 106008(5): 1-10.
|
[32] |
ZHU J, WEI S, GU H, et al. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal[J]. Environmental Science & Technology, 2012, 46(2): 977-985.
|
[33] |
AI L, ZHANG C, CHEN Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite[J]. Journal of Hazardous Materials, 2011, 192(3): 1515-1524. doi: 10.1016/j.jhazmat.2011.06.068
|
[34] |
ZHOU W, ZHANG W, CAI Y. Enzyme-enhanced adsorption of laccase immobilized graphene oxide for micro-pollutant removal[J]. Separation and Purification Technology, 2022, 294: 1-10.
|
[35] |
REN W, CHANG H, MAO T, et al. Planarity effect of polychlorinated biphenyls adsorption by graphene nanomaterials: The influence of graphene characteristics, solution pH and temperature[J]. Chemical Engineering Journal, 2019, 362: 160-168. doi: 10.1016/j.cej.2019.01.027
|
[36] |
LI X, ZHOU H, WU W, et al. Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites[J]. Journal of Colloid and Interface Science, 2015, 448: 389-397. doi: 10.1016/j.jcis.2015.02.039
|
[37] |
LI J, ZHANG S, CHEN C, et al. Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4991-5000.
|
[38] |
HUONG L M, THINH D B, TU T H, et al. Ice segregation induced self-assembly of graphene oxide into graphene-based aerogel for enhanced adsorption of heavy metal ions and phenolic compounds in aqueous media[J]. Surfaces and Interfaces, 2021, 26: 101309. doi: 10.1016/j.surfin.2021.101309
|
[39] |
SITKO R, TUREK E, ZAWISZA B, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J]. Dalton Transactions, 2013, 42(16): 5682-5689. doi: 10.1039/c3dt33097d
|
[40] |
刘国, 吴茜, 李君. 乙二胺四乙酸插层水滑石吸附Cd(Ⅱ)的影响因素研究[J]. 环境工程, 2015, 33(7): 41-45.
|
[41] |
罗冬, 谢翼飞, 谭周亮, 等. NaOH改性玉米秸秆对石油类污染物的吸附研究[J]. 环境科学与技术, 2014, 37(1): 28-32.
|
[42] |
FU W, HUANG Z. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: Synthesis, adsorption, and regeneration[J]. Chemosphere, 2018, 209: 449-456. doi: 10.1016/j.chemosphere.2018.06.087
|
[43] |
GAO Y, LI Y, ZHANG L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. Journal of Colloid and Interface Science, 2012, 368(1): 540-546. doi: 10.1016/j.jcis.2011.11.015
|
[44] |
杜文琪, 曹玮, 周航, 等. 磁性生物炭对重金属污染废水处理条件优化及机理[J]. 环境科学学报, 2018, 38(2): 492-500.
|
[45] |
刘伟, 杨琦, 李博, 等. 磁性石墨烯吸附水中Cr(Ⅵ)研究[J]. 环境科学, 2015, 36(2): 537-544.
|
[46] |
XIE H, ZHANG J, WANG D, et al. Construction of three-dimensional g-C3N4/attapulgite hybrids for Cd(II) adsorption and the reutilization of waste adsorbent[J]. Applied Surface Science, 2020, 504: 144456. doi: 10.1016/j.apsusc.2019.144456
|
[47] |
邓清, 李春阳, 邓志华, 等. 活性炭对含Zn2+和Cd2+的重金属废水吸附净化效果研究[J]. 化工新型材料, 2019, 47(4): 204-207.
|
[48] |
LIU J, DU H, YUAN S, et al. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions[J]. Water Science and Technology, 2015, 71(11): 1611-1619. doi: 10.2166/wst.2015.124
|
[49] |
李仕友, 熊凡, 王亮, 等. 氧化石墨烯/SiO2复合材料对Cd(Ⅱ)的吸附[J]. 复合材料学报, 2017, 34(6): 1205-1211.
|
[50] |
唐振平, 谢严兴, 毕玉玺, 等. 磁性介孔二氧化钛/氧化石墨烯复合材料的制备及其对 Cd(Ⅱ)的吸附[J]. 科学技术与工程, 2019, 19(35): 388-394. doi: 10.3969/j.issn.1671-1815.2019.35.059
|
[51] |
HUANG D, WU J, WANG L, et al. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water[J]. Chemical Engineering Journal, 2019, 358: 1399-1409. doi: 10.1016/j.cej.2018.10.138
|
[52] |
PLAZINSKI W, RUDZINSKI W, PLAZINSKA A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review[J]. Advances in Colloid and Interface Science, 2009, 152(1): 1-13.
|
[53] |
杨秀敏, 王文, 谢琼丹. 改性膨润土对废水中Cd(Ⅱ)的吸附特征及吸附动力学研究[J]. 过程工程学报, 2022, 22(11): 1512-1520.
|
[54] |
DIAGBOYA P N, MMAKO H K, DIKIO E D, et al. Synthesis of amine and thiol dual functionalized graphene oxide for aqueous sequestration of lead[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 1-7.
|
[55] |
DENG X, LÜ L, LI H, et al. The adsorption properties of Pb(Ⅱ) and Cd(Ⅱ) on functionalized graphene prepared by electrolysis method[J]. Journal of Hazardous Materials, 2010, 183(1-3): 923-930. doi: 10.1016/j.jhazmat.2010.07.117
|
[56] |
JAIN A, KUMARI S, AGARWAL S, et al. Water purification via novel nano-adsorbents and their regeneration strategies[J]. Process Safety and Environmental Protection, 2021, 152: 441-454. doi: 10.1016/j.psep.2021.06.031
|
[57] |
JORGE GONÇALVES F, ALVES GURGEL L V, CATONE SOARES L, et al. Application of pyridine-modified chitosan derivative for simultaneous adsorption of Cu(Ⅱ) and oxyanions of Cr(Ⅵ) from aqueous solution[J]. Journal of Environmental Management, 2021, 282: 1-18.
|
[58] |
刘晓咏, 欧阳平. 吸附材料超声波再生的研究进展[J]. 材料导报, 2016, 30(11): 110-115.
|
[59] |
LI H, DONG X, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478. doi: 10.1016/j.chemosphere.2017.03.072
|
[60] |
ZOU Y, WANG X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
|