[1] XUE S G, ZHU F, KONG X F, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. doi: 10.1007/s11356-015-4558-8
[2] SWAIN B, AKCIL A, LEE J C. Red mud valorization an industrial waste circular economy challenge; review over processes and their chemistry[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(4): 520-570. doi: 10.1080/10643389.2020.1829898
[3] 薛生国, 李晓飞, 孔祥峰, 等. 赤泥碱性调控研究进展[J]. 环境科学学报, 2017, 37(8): 2815-2828.
[4] BRAY A W, STEWART D I, COURTNEY R, et al. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment[J]. Environmental Science & Technology, 2018, 52(1): 152-161.
[5] REN J, YANG B, CHEN J, et al. Alkalinity neutralization of bauxite residue by nitrohumic acid: mineral transformation and subsequent formation of organo-mineral complexes[J]. Applied Geochemistry, 2022, 136: 105153. doi: 10.1016/j.apgeochem.2021.105153
[6] SAHA N, KHARBULI Z Y, BHATTACHARJEE A, et al. Effect of alkalinity (pH 10) on ureogenesis in the air-breathing walking catfish, Clarias batrachus[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2002, 132(2): 353-364.
[7] 管博, 于君宝, 陆兆华, 等. 黄河三角洲滨海湿地水盐胁迫对盐地碱蓬幼苗生长和抗氧化酶活性的影响[J]. 环境科学, 2011, 32(8): 2422-2429.
[8] XUE S G, LI M, JIANG J, et al. Phosphogypsum stabilization of bauxite residue: conversion of its alkaline characteristics[J]. Journal of Environmental Sciences, 2019, 77: 1-10. doi: 10.1016/j.jes.2018.05.016
[9] 黄玲, 李义伟, 薛生国, 等. 氧化铝赤泥堆场盐分组成变化[J]. 中国有色金属学报, 2016, 26(11): 2433-2439.
[10] WU H, TANG T, ZHU F, et al. Long term natural restoration creates soil‐like microbial communities in bauxite residue: a 50-year filed study[J]. Land Degradation & Development, 2021, 32(4): 1606-1617.
[11] ZHU F, XUE S G, HARTLEY W, et al. Novel predictors of soil genesis following natural weathering processes of bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(3): 2856-2863. doi: 10.1007/s11356-015-5537-9
[12] ZHU F, HOU J T, XUE S G, et al. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue[J]. Land Degradation & Development, 2017, 28(7): 2109-2120.
[13] RILLIG M C, MULLER L A, LEHMANN A. Soil aggregates as massively concurrent evolutionary incubators[J]. The ISME Journal, 2017, 11(9): 1943-1948. doi: 10.1038/ismej.2017.56
[14] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2022: 1-18.
[15] XUE S G, YE Y Z, ZHU F, et al. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition[J]. Journal of Environmental Sciences, 2019, 78: 276-286. doi: 10.1016/j.jes.2018.10.010
[16] TIAN T, LIU Z, ZHU F, et al. Improvement of aggregate‐associated organic carbon and its stability in bauxite residue by substrate amendment addition[J]. Land Degradation & Development, 2020, 31(16): 2405-2416.
[17] DONG M Y, HU S X, LV S Q, et al. Recovery of microbial community in strongly alkaline bauxite residues after amending biomass residue[J]. Ecotoxicology and Environmental Safety, 2022, 232: 113281. doi: 10.1016/j.ecoenv.2022.113281
[18] TISDALL M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x
[19] LIAO H, ZHANG Y C, ZUO Q Y, et al. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China[J]. Science of the Total Environment, 2018, 635: 784-792. doi: 10.1016/j.scitotenv.2018.04.168
[20] 朱锋, 李萌, 薛生国, 等. 自然风化过程对赤泥团聚体有机碳组分的影响[J]. 生态学报, 2017, 37(4): 1174-1183.
[21] 祁迎春, 王益权, 刘军, 等. 不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J]. 农业工程学报, 2011, 27(1): 340-347.
[22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 106-190.
[23] 关松荫, 张德生, 张志明. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 260-344.
[24] TAN C J, LUO Y F, FU T L. Soil microbial community responses to the application of a combined amendment in a historical zinc smelting area[J]. Environmental Science and Pollution Research. 2022, 29(9): 13056-13070.
[25] 王敏, 李祥云, 赵征宇, 等. 番茄秸秆和菌菇渣还田对土壤团聚体稳定性及其有机碳分布的影响[J]. 山东农业科学, 2022, 54(2): 95-103.
[26] ABIVEN S, MENASSERI S, ANGERS D A, et al. Dynamics of aggregate stability and biological binding agents during decomposition of organic materials[J]. European Journal of Soil Science, 2007, 58(1): 239-247. doi: 10.1111/j.1365-2389.2006.00833.x
[27] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103. doi: 10.1016/S0038-0717(00)00179-6
[28] HU F N, XU C Y, LI H, et al. Particles interaction forces and their effects on soil aggregates breakdown[J]. Soil and Tillage Research, 2015, 147: 1-9. doi: 10.1016/j.still.2014.11.006
[29] XUE S G, WANG Q L, TIAN T, et al. Regional-scale investigation of salt ions distribution characteristics in bauxite residue: a case study in a disposal area[J]. Journal of Central South University, 2019, 26(2): 422-429. doi: 10.1007/s11771-019-4014-x
[30] 宋松松, 胡斐南, 刘婧芳, 等. 土壤内外力共同作用下溅蚀团聚体粒径分布及迁移特征[J]. 中国水土保持科学(中英文), 2022, 20(3): 17-26.
[31] LOVLEY D R, FRAGA J L, BLUNT HARRIS E L, et al. Humic substances as a mediator for microbially catalyzed metal reduction[J]. Acta Hydrochimica Et Hydrobiologica, 1998, 26(3): 152-157. doi: 10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D
[32] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. doi: 10.1016/j.still.2004.03.008
[33] OADES J M. Soil organic matter and structural stability: mechanisms and implications for management[J]. Plant and Soil, 1984, 76(1): 319-337.
[34] 王艳玲, 蒋发辉, 徐江兵, 等. 长期配施有机肥对旱地红壤微团聚体中有机碳含量的影响[J]. 土壤通报, 2018, 49(2): 377-384.
[35] 王蕾, 王艳玲, 李欢, 等. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析[J]. 中国土壤与肥料, 2021(1): 17-25. doi: 10.11838/sfsc.1673-6257.19549
[36] UPTON R N, BACH E M, HOFMOCKEL K S. Spatio-temporal microbial community dynamics within soil aggregates[J]. Soil Biology and Biochemistry, 2019, 132: 58-68. doi: 10.1016/j.soilbio.2019.01.016
[37] LU M Z, YANG M Y, YANG Y R, et al. Soil carbon and nutrient sequestration linking to soil aggregate in a temperate fen in Northeast China[J]. Ecological Indicators, 2019, 98: 869-878. doi: 10.1016/j.ecolind.2018.11.054
[38] ZHU F, LI Y B, XUE S G, et al. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues[J]. Environmental Science and Pollution Research. 2016, 23(9): 9073-9081.
[39] WERNER F, MUELLER C W, THIEME J, et al. Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth[J]. Scientific Reports, 2017, 7(1): 3203. doi: 10.1038/s41598-017-03537-8
[40] YAN Y J, DAI Q H, HU G, et al. Effects of vegetation type on the microbial characteristics of the fissure soil-plant systems in karst rocky desertification regions of SW China[J]. Science of the Total Environment, 2020, 712: 136543. doi: 10.1016/j.scitotenv.2020.136543
[41] CUI Y X, FANG L C, GUO X B, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China[J]. Soil Biology and Biochemistry, 2018, 116: 11-21. doi: 10.1016/j.soilbio.2017.09.025
[42] WANG Y D, HU N, GE T D, et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment[J]. Applied Soil Ecology, 2017, 111: 65-72. doi: 10.1016/j.apsoil.2016.11.015
[43] 李辉, 曲洋, 姚敏杰, 等. 赤泥自然成土过程及其微生物驱动机制[J]. 应用生态学报, 2021, 32(4): 1452-1460.
[44] 黄荣珍, 王金平, 朱丽琴, 等. 杉木人工林土壤微团聚体中铁铝氧化物与微生物的分布及其关系[J]. 水土保持通报, 2022, 42(1): 1-9.