[1] 王辉. 城市生活垃圾处理设施落地现状与对策研究 [J]. 化工设计通讯, 2022, 48(2): 196-198,210. doi: 10.3969/j.issn.1003-6490.2022.02.067 WANG H. Study on the current situation and countermeasures of urban domestic waste treatment facilities [J]. Chemical Engineering Design Communications, 2022, 48(2): 196-198,210(in Chinese). doi: 10.3969/j.issn.1003-6490.2022.02.067
[2] TENG C Y, ZHOU K G, PENG C H, et al. Characterization and treatment of landfill leachate: A review [J]. Water Research, 2021, 203: 117525. doi: 10.1016/j.watres.2021.117525
[3] WIJEKOON P, KOLIYABANDARA P A, COORAY A T, et al. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges [J]. Journal of Hazardous Materials, 2022, 421: 126627. doi: 10.1016/j.jhazmat.2021.126627
[4] LI Y M, YANG Z Z, YANG K H, et al. Removal of chloride from water and wastewater: Removal mechanisms and recent trends [J]. Science of the Total Environment, 2022, 821: 153174. doi: 10.1016/j.scitotenv.2022.153174
[5] CAO K F, CHEN Z, WU Y H, et al. The noteworthy chloride ions in reclaimed water: Harmful effects, concentration levels and control strategies [J]. Water Research, 2022, 215: 118271. doi: 10.1016/j.watres.2022.118271
[6] 张阳, 史丙丁, 马保中, 等. 酸性溶液除氯技术研究现状及进展 [J]. 有色金属科学与工程, 2021, 12(5): 10-17. ZHANG Y, SHI B D, MA B Z, et al. Research status and progress of chlorine removal technology in acid solution [J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 10-17(in Chinese).
[7] SUN D Q, ZHOU Z, MING Q, et al. Improving settleability and dewaterability of Friedel's salt for chloride removal from saline wastewater [J]. Desalination, 2021, 509: 115070. doi: 10.1016/j.desal.2021.115070
[8] ZHANG L J, LV P, HE Y, et al. Ultrasound-assisted cleaning chloride from wastewater using Friedel's salt precipitation [J]. Journal of Hazardous Materials, 2021, 403: 123545. doi: 10.1016/j.jhazmat.2020.123545
[9] PENG X J, DOU W Y, KONG L H, et al. Removal of chloride ions from strongly acidic wastewater using Cu(0)/Cu(Ⅱ): Efficiency enhancement by UV irradiation and the mechanism for chloride ions removal [J]. Environmental Science & Technology, 2019, 53(1): 383-389.
[10] DOU W Y, HU X Y, KONG L H, et al. UV-improved removal of chloride ions from strongly acidic wastewater using Bi2O3: Efficiency enhancement and mechanisms [J]. Environmental Science & Technology, 2019, 53(17): 10371-10378.
[11] 封志敏, 宁顺明, 王文娟, 等. 氧化铋法从硫酸锌溶液中除氯的研究 [J]. 矿冶工程, 2015, 35(4): 63-66. doi: 10.3969/j.issn.0253-6099.2015.04.017 FENG Z M, NING S M, WANG W J, et al. Dechlorination of zinc sulfate solution by bismuth oxide [J]. Mining and Metallurgical Engineering, 2015, 35(4): 63-66(in Chinese). doi: 10.3969/j.issn.0253-6099.2015.04.017
[12] HUANG S Q, LI L, ZHU N W, et al. Removal and recovery of chloride ions in concentrated leachate by Bi(Ⅲ) containing oxides quantum dots/two-dimensional flakes [J]. Journal of Hazardous Materials, 2020, 382: 121041. doi: 10.1016/j.jhazmat.2019.121041
[13] WU Y, CHEN Y W, HUANG S Q, et al. Comparison of bismuth ferrites for chloride removal: Removal efficiency, stability, and structure [J]. Applied Surface Science, 2022, 576: 151804. doi: 10.1016/j.apsusc.2021.151804
[14] FAN Y Z, WANG T H, ZHANG Y Y, et al. Enhancing the near-infrared photocatalytic activity and upconversion luminescence of BiOCl: Yb3+–Er3+ nanosheets with polypyrrole in situ modification [J]. Journal of Materials Chemistry C, 2021, 9(42): 15251-15262. doi: 10.1039/D1TC03451K
[15] PENG Y H, PENG J C, HAN J J, et al. Intense single-band red upconversion emission in BiOCl: Er3+ layered semiconductor via co-doping Ho3+ [J]. Journal of Rare Earths, 2020, 38(6): 577-583. doi: 10.1016/j.jre.2019.11.008
[16] WU W W, CHEN D Q, ZHOU Y, et al. Near-single-band red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets [J]. Journal of Alloys and Compounds, 2016, 682: 275-283. doi: 10.1016/j.jallcom.2016.04.305
[17] LI Y J, SONG Z G, LI C, et al. Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl: Er3+/Yb3+ synthesized at low temperature [J]. Ceramics International, 2013, 39(8): 8911-8916. doi: 10.1016/j.ceramint.2013.04.085
[18] 宋志国, 王莎莎, 刘桐, 等. 一种稀土离子掺杂氯氧化铋半导体材料及其制备方法: CN109943336B[P]. 2021-09-28. SONG Z G, WANG S S, LIU T, et al. Rare earth ion-doped bismuth oxychloride semiconductor material and preparation method thereof: CN109943336B[P]. 2021-09-28(in Chinese).
[19] 陈凡丽, 李永进, 张相周, 等. Zn2+掺杂诱导Eu3+激活BiOCl层状半导体的反常发光性能研究 [J]. 无机材料学报, 2017, 32(8): 877-883. doi: 10.15541/jim20160597 CHEN F L, LI Y J, ZHANG X Z, et al. Anomalous emission performance of Eu3+-activated BiOCl layered phosphors induced by doping Zn2+ [J]. Journal of Inorganic Materials, 2017, 32(8): 877-883(in Chinese). doi: 10.15541/jim20160597
[20] LI G B, HUANG S Q, ZHU N W, et al. Defect-rich heterojunction photocatalyst originated from the removal of chloride ions and its degradation mechanism of norfloxacin [J]. Chemical Engineering Journal, 2021, 421: 127852. doi: 10.1016/j.cej.2020.127852
[21] 吴飞飞, 马春阳, 焦金龙, 等. 纳米薄片状氯氧化铋的制备及其热解行为 [J]. 硅酸盐学报, 2016, 44(7): 948-952. WU F F, MA C Y, JIAO J L, et al. Preparation and thermal decomposition of nanoflakes bismuth oxychloride crystals [J]. Journal of the Chinese Ceramic Society, 2016, 44(7): 948-952(in Chinese).
[22] LI J, YU Y, ZHANG L Z. Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis [J]. Nanoscale, 2014, 6(15): 8473-8488. doi: 10.1039/C4NR02553A
[23] LI H, LI J, AI Z H, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives [J]. Angewandte Chemie International Edition, 2018, 57(1): 122-138. doi: 10.1002/anie.201705628
[24] 张双, 周集体. 高盐有机化工废水中COD与TOC的相关性 [J]. 化工环保, 2018, 38(1): 122-126. doi: 10.3969/j.issn.1006-1878.2018.01.022 ZHANG S, ZHOU J T. Correlation between COD and TOC in high-salinity organic chemical industrial wastewater [J]. Environmental Protection of Chemical Industry, 2018, 38(1): 122-126(in Chinese). doi: 10.3969/j.issn.1006-1878.2018.01.022
[25] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
[26] 邓阳, 冯传平, 胡伟武, 等. 电化学氧化垃圾渗滤液生化出水过程中溶解性有机物形态及可生化性 [J]. 环境化学, 2018, 37(7): 1647-1659. doi: 10.7524/j.issn.0254-6108.2017100902 DENG Y, FENG C P, HU W W, et al. DOM composition and biodegradability of biologically treated landfill leachate during electrochemical oxidation degradation [J]. Environmental Chemistry, 2018, 37(7): 1647-1659(in Chinese). doi: 10.7524/j.issn.0254-6108.2017100902
[27] 张正义, 张千, 楼紫阳, 等. 催化臭氧氧化处理渗滤液RO浓液的氧化特性及光谱分析 [J]. 化工学报, 2021, 72(10): 5362-5371. doi: 10.11949/0438-1157.20210400 ZHANG Z Y, ZHANG Q, LOU Z Y, et al. Oxidation characteristics and spectral analysis of leachate reverse osmosis concentrate by catalytic ozonation [J]. CIESC Journal, 2021, 72(10): 5362-5371(in Chinese). doi: 10.11949/0438-1157.20210400
[28] WEI S Q, SHANG X Y, HUANG P, et al. Polarized upconversion luminescence from a single LiLuF4: Yb3+/Er3+ microcrystal for orientation tracking [J]. Science China (Materials), 2022, 65(1): 220-228. doi: 10.1007/s40843-021-1713-x
[29] ZHOU X, WANG H, XIA H P, et al. Efficient up-conversion Yb3+, Er3+ co-doped Na5Lu9F32 single crystal for photovoltaic application under solar cell spectrum excitation [J]. Chinese Optics Letters, 2019, 17(9): 72-76.
[30] WANG M J, HUANG S Q, LV Y Y, et al. Fabrication of monodispersed plasmonic photocatalysts on activated carbon with the carbon source and reduction property of sewage sludge [J]. Applied Surface Science, 2021, 538: 148036. doi: 10.1016/j.apsusc.2020.148036
[31] 吴岳, 黄寿强, 刘维桥. 废水除氯产物氯氧化铋的干法再生研究 [J]. 江苏理工学院学报, 2021, 27(2): 72-80. doi: 10.3969/j.issn.1674-8522.2021.02.011 WU Y, HUANG S Q, LIU W Q. Study on dry regeneration of bismuth oxychloride obtained from the removal of chloride ions contained in wastewater [J]. Journal of Jiangsu University of Technology, 2021, 27(2): 72-80(in Chinese). doi: 10.3969/j.issn.1674-8522.2021.02.011
[32] XU Y X, JIN X L, GE T, et al. Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4 [J]. Chemical Engineering Journal, 2021, 409: 128178. doi: 10.1016/j.cej.2020.128178
[33] XU B R, GAO Y Q, LI Y D, et al. Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: The effect of defect states on photocatalytic performance [J]. Applied Surface Science, 2020, 507: 144806. doi: 10.1016/j.apsusc.2019.144806
[34] FAN C, ZHANG Y H, HUANG S Q, et al. Effect of introducing zinc on the photoluminescence and stability of cesium lead halide perovskite materials [J]. Applied Surface Science, 2022, 584: 152527. doi: 10.1016/j.apsusc.2022.152527
[35] KAHRAMAN A, KARACALI H, YILMAZ E. Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics [J]. Journal of Alloys and Compounds, 2020, 825: 154171. doi: 10.1016/j.jallcom.2020.154171
[36] 李永进, 黄杨彬, 刘群, 等. 近紫外激发具有颜色可调的Er3+/Eu3+共掺BiOCl荧光粉 [J]. 物理学报, 2015, 64(17): 357-362. LI Y J, HUANG Y B, LIU Q, et al. Color-tunableness of Er3+/Eu3+ co-doped BiOCl phosphors for near ultraviolet excitation [J]. Acta Physica Sinica, 2015, 64(17): 357-362(in Chinese).