[1] |
LI H L, ZHAI J F, TIAN J Q, et al. Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution [J]. Biosensors and Bioelectronics, 2011, 26(12): 4656-4660. doi: 10.1016/j.bios.2011.03.026
|
[2] |
LEE Y F, NAN F H, CHEN M J, et al. Detection and removal of mercury and lead ions by using gold nanoparticle-based gel membrane [J]. Analytical Methods, 2012, 4(6): 1709. doi: 10.1039/c2ay05872c
|
[3] |
HAN F X, PATTERSON W D, XIA Y J, et al. Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study [J]. Water Air and Soil Pollution, 2006, 170(1/2/3/4): 161-171.
|
[4] |
ZAIB M, ATHAR M M, SAEED A, et al. Electrochemical determination of inorganic mercury and arsenic—A review [J]. Biosensors and Bioelectronics, 2015, 74: 895-908. doi: 10.1016/j.bios.2015.07.058
|
[5] |
RASTOGI L, SASHIDHAR R B, KARUNASAGAR D, et al. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system [J]. Talanta, 2014, 118: 111-117. doi: 10.1016/j.talanta.2013.10.012
|
[6] |
CAO D, LUO Y X, LIU W P, et al. Enzyme-free fluorescence determination of uric acid and trace Hg(Ⅱ) in serum using Si/N doped carbon dots [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 263: 120182. doi: 10.1016/j.saa.2021.120182
|
[7] |
XU J, HAN B Y. Synthesis of protein-directed orange/red-emitting copper nanoclusters via hydroxylamine hydrochloride reduction approach and their applications on Hg2+ sensing [J]. NANO, 2016, 11: 1650108. doi: 10.1142/S1793292016501083
|
[8] |
ZANG J C, LI C G, ZHOU K, et al. Nanomolar Hg2+ detection using β-lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media [J]. Analytical Chemistry, 2016, 88(20): 10275-10283. doi: 10.1021/acs.analchem.6b03011
|
[9] |
AGARWALLA H, MAHAJAN P S, SAHU D, et al. A switch-on NIR probe for specific detection of Hg2+ ion in aqueous medium and in mitochondria [J]. Inorganic Chemistry, 2016, 55(22): 12052-12060. doi: 10.1021/acs.inorgchem.6b02233
|
[10] |
YANG Y, XING X X, ZOU T, et al. A novel and sensitive ratiometric fluorescence assay for carbendazim based on N-doped carbon quantum dots and gold nanocluster nanohybrid [J]. Journal of Hazardous Materials, 2020, 386: 121958. doi: 10.1016/j.jhazmat.2019.121958
|
[11] |
WANG Y Y, MAO L, LIU W, et al. A ratiometric fluorometric and colorimetric probe for the β-thalassemia drug deferiprone based on the use of gold nanoclusters and carbon dots [J]. Mikrochimica Acta, 2018, 185(9): 442. doi: 10.1007/s00604-018-2982-4
|
[12] |
WANG X Y, DUAN Q Q, ZHANG B Y, et al. Ratiometric fluorescence detection of Cd2+ based on N, S co-doped carbon quantum dots/Au nanoclusters [J]. Microchemical Journal, 2021, 167: 106269. doi: 10.1016/j.microc.2021.106269
|
[13] |
LIU T, LI N, DONG J X, et al. A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite [J]. Biosensors and Bioelectronics, 2017, 87: 772-778. doi: 10.1016/j.bios.2016.08.098
|
[14] |
HU X T, LI Y X, XU Y W, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk [J]. Food Chemistry, 2021, 339: 127775. doi: 10.1016/j.foodchem.2020.127775
|
[15] |
ZHANG Q, MEI H, ZHOU W T, et al. Cerium ion(III)-triggered aggregation-induced emission of copper nanoclusters for trace-level p-nitrophenol detection in water [J]. Microchemical Journal, 2021, 162: 105842. doi: 10.1016/j.microc.2020.105842
|
[16] |
NIU W J, LI Y, ZHU R H, et al. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging [J]. Sensors and Actuators B:Chemical, 2015, 218: 229-236. doi: 10.1016/j.snb.2015.05.006
|
[17] |
AMJADI M, MANZOORI J L, HALLAJ T, et al. Application of the chemiluminescence system composed of silicon-doped carbon dots, iron(II) and K2S2O8 to the determination of norfloxacin [J]. Microchimica Acta, 2017, 184(6): 1587-1593. doi: 10.1007/s00604-017-2139-x
|
[18] |
JIA X F, LI J, WANG E K. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence [J]. Nanoscale, 2012, 4(18): 5572-5575. doi: 10.1039/c2nr31319g
|
[19] |
DING L H, GONG Z J, YAN M, et al. Determination of glucose by using fluorescent silicon nanoparticles and an inner filter caused by peroxidase-induced oxidation of o-phenylenediamine by hydrogen peroxide [J]. Microchimica Acta, 2017, 184(11): 4531-4536. doi: 10.1007/s00604-017-2445-3
|
[20] |
YANG Y, HYO D, WU H, et al. N, P-doped carbon quantum dots as a FL sensing platform for carbendazim detection based on FL resonance energy transfer [J]. Sens Actuators B, 2018, 274: 296-303. doi: 10.1016/j.snb.2018.07.130
|
[21] |
WANG W J, PENG J W, LI F M, et al. Phosphorus and chlorine co-doped carbon dots with strong photoluminescence as a fluorescent probe for ferric ions [J]. Mikrochimica Acta, 2018, 186(1): 32.
|
[22] |
SK M P, CHATTOPADHYAY A. Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor [J]. RSC Advances, 2014, 4(60): 31994-31999. doi: 10.1039/C4RA04264F
|
[23] |
SONG J P, LI J, GUO Z Y, et al. A novel fluorescent sensor based on sulfur and nitrogen co-doped carbon dots with excellent stability for selective detection of doxycycline in raw milk [J]. RSC Advances, 2017, 7(21): 12827-12834. doi: 10.1039/C7RA01074E
|
[24] |
VINCI J C, FERRER I M, SEEDHOUSE S J, et al. Hidden properties of carbon dots revealed after HPLC fractionation [J]. The Journal of Physical Chemistry Letters, 2013, 4(2): 239-243. doi: 10.1021/jz301911y
|
[25] |
王学川, 白鹏霞, 罗晓民, 等. 基于明胶制备碳量子点及其光学性能的研究 [J]. 光谱学与光谱分析, 2019, 39(4): 1154-1161.
WANG X C, BAI P X, LUO X M, et al. Synthesis of carbon quantum dots based on gelatin and study on it's optical property [J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1154-1161(in Chinese).
|
[26] |
LI L L, NI G, WANG J N, et al. Synthesis of nitrogen-doped carbon quantum dots and its application as fluorescent sensor for Hg2+ [J]. Spectroscpy and Spectral Analysis, 2016, 36(9): 2846-2851.
|
[27] |
国家环保总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2006: 354.
State Environmental Protection Administration. Water and wastewater monitoring and analysis methods [M]. Beijing: China Environmental Science Press, 2006: 354.
|
[28] |
WANG K, DONG E F, FANG M, et al. Construction of ratio fluorescence sensor based on CdTe quantum dots and benzocoumarin-3-carboxylic acid for Hg2+ detection [J]. Chinese Journal of Analytical Chemistry, 2022, 50(4): 100070. doi: 10.1016/j.cjac.2022.100070
|
[29] |
CAO X T, MA J, LIN Y P, et al. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 151: 875-880. doi: 10.1016/j.saa.2015.07.034
|
[30] |
CHAI F, WANG C G, WANG T T, et al. L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light [J]. Nanotechnology, 2010, 21(2): 025501. doi: 10.1088/0957-4484/21/2/025501
|
[31] |
LI D Y, WANG S P, AZAD F, et al. Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+ [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110141. doi: 10.1016/j.ecoenv.2019.110141
|
[32] |
SINGH V K, SINGH V, YADAV P K, et al. Nitrogen doped fluorescent carbon quantum dots for on-off-on detection of Hg2+ and glutathione in aqueous medium: Live cell imaging and IMPLICATION logic gate operation [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 384: 112042. doi: 10.1016/j.jphotochem.2019.112042
|
[33] |
LIU T, LI N, DONG J X, et al. Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation [J]. Sensors and Actuators B:Chemical, 2016, 231: 147-153. doi: 10.1016/j.snb.2016.02.141
|
[34] |
WANG S, CHEN H Y, XIE H L, et al. A novel thioctic acid-carbon dots fluorescence sensor for the detection of Hg2+ and thiophanate methyl via S-Hg affinity [J]. Food Chemistry, 2021, 346: 128923. doi: 10.1016/j.foodchem.2020.128923
|
[35] |
祝艳, 鲁应光, 母昭, 等. 硅掺杂碳点荧光猝灭法检测废水中钴离子 [J]. 环境化学, 2020, 39(12): 3517-3523.
ZHU Y, LU Y G, MU Z, et al. Determination of cobalt by silicon doped carbon dots fluorescence spectrophotometer [J]. Environmental Chemistry, 2020, 39(12): 3517-3523(in Chinese).
|
[36] |
KUMARI A, KUMAR A, SAHU S K, et al. Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging [J]. Sensors and Actuators B:Chemical, 2018, 254: 197-205. doi: 10.1016/j.snb.2017.07.075
|
[37] |
WANG X F, YANG Y X, HUO D Q, et al. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate [J]. Mikrochimica Acta, 2020, 187(6): 341. doi: 10.1007/s00604-020-04304-9
|
[38] |
ZHOU W S, LI C H, SUN C, et al. Simultaneously determination of trace Cd2+ and Pb2+ based on l-cysteine/graphene modified glassy carbon electrode [J]. Food Chemistry, 2016, 192: 351-357. doi: 10.1016/j.foodchem.2015.07.042
|
[39] |
LI Y H, CAI J B, LIU F J, et al. Construction of a turn off-on fluorescent nanosensor for cholesterol based on fluorescence resonance energy transfer and competitive host-guest recognition [J]. Talanta, 2019, 201: 82-89. doi: 10.1016/j.talanta.2019.03.110
|
[40] |
GUAN R T, TAO L X, HU Y Y, et al. Selective determination of Ag + in the presence of Cd2+, Hg2+ and Cu2+ based on their different interactions with gold nanoclusters [J]. RSC Advances, 2020, 10(55): 33299-33306. doi: 10.1039/D0RA05787H
|
[41] |
孙雪花, 张锦婷, 赵李艳, 等. 基于氮掺杂碳量子点的制备及其对Hg2+的响应 [J]. 环境化学, 2021, 40(1): 321-326. doi: 10.7524/j.issn.0254-6108.2020061504
SUN X H, ZHANG J T, ZHAO L Y, et al. Preparation of nitrogen-doped carbon quantum dots and its response to Hg2+ [J]. Environmental Chemistry, 2021, 40(1): 321-326(in Chinese). doi: 10.7524/j.issn.0254-6108.2020061504
|
[42] |
HUA J H, MU Z, HUA P, et al. Ratiometric fluorescence nanoprobe for monitoring of intracellular temperature and tyrosine based on a dual emissive carbon dots/gold nanohybrid [J]. Talanta, 2020, 219: 121279. doi: 10.1016/j.talanta.2020.121279
|
[43] |
CHAN Y H, CHEN J X, LIU Q S, et al. Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots [J]. Analytical Chemistry, 2010, 82(9): 3671-3678. doi: 10.1021/ac902985p
|
[44] |
LIANG G X, LIU H Y, ZHANG J R, et al. Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots [J]. Talanta, 2010, 80(5): 2172-2176. doi: 10.1016/j.talanta.2009.11.025
|