[1] 滕应, 骆永明, 沈仁芳, 等. 场地土壤-地下水污染物多介质界面过程与调控研究进展与展望 [J]. 土壤学报, 2020, 57(6): 1333-1340. TENG Y, LUO Y M, SHEN R F, et al. Research progress and perspective of the multi-medium interface process and regulation principle of pollutants in site soil-groundwater [J]. Acta Pedologica Sinica, 2020, 57(6): 1333-1340(in Chinese).
[2] LIU Q Y, WU Y H, ZHOU Y Z, et al. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks [J]. Environmental Pollution, 2021, 284: 117191. doi: 10.1016/j.envpol.2021.117191
[3] CHEN D X, ZHAO H, ZHAO J, et al. Mapping the finer-scale carcinogenic risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil-A case study of Shenzhen City, China [J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6735. doi: 10.3390/ijerph17186735
[4] ZHAO S, WANG J H, FENG S J, et al. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review [J]. Science of the Total Environment, 2022, 804: 150140. doi: 10.1016/j.scitotenv.2021.150140
[5] 潘敏. 土壤环境因子对有机污染物迁移转化的影响 [J]. 现代农业科技, 2010(17): 280-282. doi: 10.3969/j.issn.1007-5739.2010.17.177 PAN M. Effects of soil environmental factors on the migration and transformation of organic pollutants [J]. Modern Agricultural Sciences and Technology, 2010(17): 280-282(in Chinese). doi: 10.3969/j.issn.1007-5739.2010.17.177
[6] ZHAN T L T, GUAN C, XIE H J, et al. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: A field and theoretical investigation [J]. Science of the Total Environment, 2014, 470/471: 290-298. doi: 10.1016/j.scitotenv.2013.09.081
[7] BOULANGÉ M, LORGEOUX C, BIACHE C, et al. Aging as the main factor controlling PAH and polar-PAC (polycyclic aromatic compound) release mechanisms in historically coal-tar-contaminated soils [J]. Environmental Science and Pollution Research, 2019, 26(2): 1693-1705. doi: 10.1007/s11356-018-3708-1
[8] TOMLINSON D W, RIVETT M O, WEALTHALL G P, et al. Understanding complex LNAPL sites: Illustrated handbook of LNAPL transport and fate in the subsurface [J]. Journal of Environmental Management, 2017, 204: 748-756. doi: 10.1016/j.jenvman.2017.08.015
[9] THOMÉ A, CECCHIN I, REGINATTO C, et al. Biostimulation and rainfall infiltration: Influence on retention of biodiesel in residual clayey soil [J]. Environmental Science and Pollution Research International, 2017, 24(10): 9594-9604. doi: 10.1007/s11356-017-8670-9
[10] 刘明遥. 石油烃在包气带中迁移转化规律与数值模拟研究: 以东北某石油污染场地为例[D]. 长春: 吉林大学, 2014. LIU M Y. Study on migration and transformation, and numerical simulation of petroleum hydrocarbons in aeration zone—for example in a petroleum contaminated site in the northeast[D]. Changchun: Jilin University, 2014(in Chinese).
[11] 任璇. LNAPLs在包气带层状非均质界面迁移规律的研究[D]. 长春: 吉林大学, 2019. REN X. Study on the migration law of LNAPLs at the layered heterogeneous interface in the vadose zone[D]. Changchun: Jilin University, 2019(in Chinese).
[12] 潘峰, 陈丽华, 付素静, 等. 石油类污染物在陇东黄土塬区土壤中迁移的模拟试验研究 [J]. 环境科学学报, 2012, 32(2): 410-418. doi: 10.13671/j.hjkxxb.2012.02.027 PAN F, CHEN L H, FU S J, et al. A study on the transport performance of the petroleum contaminants in soil of the Longdong loess plateau [J]. Acta Scientiae Circumstantiae, 2012, 32(2): 410-418(in Chinese). doi: 10.13671/j.hjkxxb.2012.02.027
[13] 郭蕾蕾. 挥发性有机污染物苯在包气带的运移规律及污防控制初探[D]. 成都: 成都理工大学, 2016. GUO L L. The migration law of volatile organic pollutant benzene in the vadose zone and its pollution prevention control [D]. Chengdu: Chengdu University of Technology, 2016(in Chinese).
[14] 王燕河. 有机污染物在包气带中迁移转化模型研究[D]. 长春: 吉林大学, 2013. WANG Y H. Model study on the migration and transformation of organic pollutants in vadose zone[D]. Changchun: Jilin University, 2013(in Chinese).
[15] 夏凤英. 石油类场地典型挥发/半挥发性污染物分布及环境风险研究[D]. 北京: 北京工商大学, 2010. XIA F Y. Research on the distribution and environmental risk of typical volatile/semi-volatile pollutants in petroleum sites [D]. Beijing: Beijing Technology and Business University, 2010(in Chinese).
[16] 王喜龙, 徐福留, 王学军, 等. 天津污灌区苯并(a)芘的分布和迁移通量模型 [J]. 环境科学学报, 2003, 23(1): 88-93. doi: 10.3321/j.issn:0253-2468.2003.01.018 WANG X L, XU F L, WANG X J, et al. Fugacity modeling of benzo(a)Pyrene in wastewater irrigated area of Tianjin [J]. Acta Scientiae Circumstantiae, 2003, 23(1): 88-93(in Chinese). doi: 10.3321/j.issn:0253-2468.2003.01.018
[17] 王卓. 垃圾填埋场地下水有机污染物与胶体的协同迁移机制及其模拟预测研究[D]. 长春: 吉林大学, 2018. WANG Z. Research on the migration and transformition mechenism of organic contaminant with colloids in landfill groundwater[D]. Changchun: Jilin University, 2018(in Chinese).
[18] 骆永明. 中国污染场地修复的研究进展、问题与展望 [J]. 环境监测管理与技术, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002 LUO Y M. Contaminated site remediation in China: Progresses, problems and prospects [J]. The Administration and Technique of Environmental Monitoring, 2011, 23(3): 1-6(in Chinese). doi: 10.3969/j.issn.1006-2009.2011.03.002
[19] 马妍, 王盾, 徐竹, 等. 北京市工业污染场地修复现状、问题及对策 [J]. 环境工程, 2017, 35(10): 120-124. doi: 10.13205/j.hjgc.201710025 MA Y, WANG D, XU Z, et al. Current situation, problems and countermeasures of industrial contaminated sites remediation in Beijing [J]. Environmental Engineering, 2017, 35(10): 120-124(in Chinese). doi: 10.13205/j.hjgc.201710025
[20] 杨悦锁, 陈煜, 李盼盼, 等. 土壤、地下水中重金属和多环芳烃复合污染及修复研究进展 [J]. 化工学报, 2017, 68(6): 2219-2232. YANG Y S, CHEN Y, LI P P, et al. Research progress on co-contamination and remediation of heavy metals and polycyclic aromatic hydrocarbons in soil and groundwater [J]. CIESC Journal, 2017, 68(6): 2219-2232(in Chinese).
[21] HU R Y, LIU G J, ZHANG H, et al. Odor pollution due to industrial emission of volatile organic compounds: A case study in Hefei, China [J]. Journal of Cleaner Production, 2020, 246: 119075. doi: 10.1016/j.jclepro.2019.119075
[22] 楼春, 钟茜. 焦化厂场地土壤污染分布特征分析 [J]. 中国资源综合利用, 2019, 37(4): 177-179. LOU C, ZHONG X. Analysis on distribution characteristics of soil pollution in coking plant site [J]. China Resources Comprehensive Utilization, 2019, 37(4): 177-179(in Chinese).
[23] 冯嫣, 吕永龙, 焦文涛, 等. 北京市某废弃焦化厂不同车间土壤中多环芳烃(PAHs)的分布特征及风险评价 [J]. 生态毒理学报, 2009, 4(3): 399-407. FENG Y, LYU Y L, JIAO W T, et al. Distribution and risk of polycyclic aromatic hydrocarbons in soils from different workshops of an abandoned coking factory in Beijing [J]. Asian Journal of Ecotoxicology, 2009, 4(3): 399-407(in Chinese).
[24] 王培俊, 刘俐, 李发生, 等. 西南某焦化场地土壤中典型污染物的特征分布 [J]. 煤炭学报, 2011, 36(9): 1587-1592. doi: 10.13225/j.cnki.jccs.2011.09.036 WANG P J, LIU L, LI F S, et al. Characteristic distribution of typical contaminants in the soil of a coking plant site in the southwest of China [J]. Journal of China Coal Society, 2011, 36(9): 1587-1592(in Chinese). doi: 10.13225/j.cnki.jccs.2011.09.036
[25] ZHANG R H, JIANG L, JIANG D D, et al. Peculiar attenuation of soil toluene at contaminated coking sites [J]. Chemosphere, 2020, 255: 126957. doi: 10.1016/j.chemosphere.2020.126957
[26] 李群, 李梅, 李杨, 等. 某大型焦化厂地块土壤中PAHs分布特征 [J]. 生态与农村环境学报, 2021, 37(12): 1623-1632. doi: 10.19741/j.issn.1673-4831.2021.0564 LI Q, LI M, LI Y, et al. Analysis on distribution characteristics of soil polycyclic aromatic hydrocarbons (PHAs) in a large coking plant site [J]. Journal of Ecology and Rural Environment, 2021, 37(12): 1623-1632(in Chinese). doi: 10.19741/j.issn.1673-4831.2021.0564
[27] MENG X P, CHEN H H, WU M M. Pollution characteristics of polycyclic aromatic hydrocarbons in unsaturated zone of the different workshops at a large iron and steel industria site of Beijing, China [J]. Polish Journal of Environmental Studies, 2020, 30: 781-792. doi: 10.15244/pjoes/123920
[28] 付向明. 多环芳烃菲在包气带中的迁移转化规律研究[D]. 长春: 吉林大学, 2007. FU X M. Study on the migration and transformation law of polycyclic aromatic phenanthrenes in the vadose zone [D]. Changchun: Jilin University, 2007(in Chinese).
[29] 田文杰. 模拟酸雨作用下红壤中多环芳烃的稳定性及释放机制研究[D]. 北京: 中国矿业大学(北京), 2012. TIAN W J. Study on stability and release mechanism of polycyclic aromatic hydrocarbons from red soil under simulated acid rain[D]. Beijing: China University of Mining & Technology, Beijing, 2012(in Chinese).
[30] 乔肖翠, 何江涛, 杨蕾, 等. DOM及pH对典型PAHs在土壤中迁移影响模拟实验研究 [J]. 农业环境科学学报, 2014, 33(5): 943-950. doi: 10.11654/jaes.2014.05.017 QIAO X C, HE J T, YANG L, et al. Influences of DOM and pH on PAHs migrations in soil columns [J]. Journal of Agro-Environment Science, 2014, 33(5): 943-950(in Chinese). doi: 10.11654/jaes.2014.05.017
[31] 裴丽欣. 粘性土的不同特征对多环芳烃阻隔能力影响研究[D]. 武汉: 中国地质大学, 2011. PEI L X. Blocking ability analysis for cochesive soil of different characteristics to PAHs[D]. Wuhan: China University of Geosciences, 2011(in Chinese).
[32] 薛镇坤, 左锐, 王金生, 等. 石油烃在非均质包气带中的吸附作用及迁移规律 [J]. 环境科学研究, 2020, 33(4): 1028-1036. doi: 10.13198/j.issn.1001-6929.2019.09.05 XUE Z K, ZUO R, WANG J S, et al. Migration of petroleum pollutants in strong heterogeneous vadose zones [J]. Research of Environmental Sciences, 2020, 33(4): 1028-1036(in Chinese). doi: 10.13198/j.issn.1001-6929.2019.09.05
[33] 中华人民共和国环境保护部. 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 605—2011[S]. 2011 Ministry of Environmental Protection of the People's Republic of China . Soil and sediment-Determination of volatile organic compounds-Purge and trap gas chromatography/mass spectrometry method: HJ 605—2011[S]. 2011(in Chinese).
[34] 中华人民共和国环境保护部. 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 639—2012[S]. 北京: 中国环境科学出版社, 2013. Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of volatile organic compounds-Purge and trap/gas chromatography-mass spectrometer: HJ 639—2012[S]. Beijing: China Environment Science Press, 2013(in Chinese).
[35] QI W X, QU J H, LIU H J, et al. Partitioning and sources of PAHs in wastewater receiving streams of Tianjin, China [J]. Environmental Monitoring and Assessment, 2012, 184(4): 1847-1855. doi: 10.1007/s10661-011-2083-x
[36] 岳钧. 基于柱实验的农田土壤有机质吸附解吸动态研究[D]. 北京: 中国地质科学院, 2021. YUE J. Adsorption and desorption dynamics of organic carbon in farmland soil based on column experiment[D]. Beijing: Chinese Academy of Geological Sciences, 2021(in Chinese).
[37] DETWILER R P, HALL C A S. The global carbon-cycle - response [J]. Science, 1988, 241(4874): 1738-1739. doi: 10.1126/science.241.4874.1738
[38] 霍丽娟, 王美玲, 赵慧超, 等. 不同组成有机质对土壤中砷迁移行为的影响 [J]. 地球与环境, 2022, 50(2): 184-191. HUO L J, WANG M L, ZHAO H C, et al. Effects of natural organic matter with different composition on the mobility of arsenic in soil [J]. Earth and Environment, 2022, 50(2): 184-191(in Chinese).
[39] 陈记文, 薛强, 刘磊, 等. 非平衡吸附模型在研究渗滤液对土壤污染影响中的应用 [J]. 岩土力学, 2006, 27(12): 2186-2190. doi: 10.3969/j.issn.1000-7598.2006.12.019 CHEN J W, XUE Q, LIU L, et al. Application of non-equilibrium adsorption model to study of influence of waste landfill leachate on soil pollution [J]. Rock and Soil Mechanics, 2006, 27(12): 2186-2190(in Chinese). doi: 10.3969/j.issn.1000-7598.2006.12.019
[40] GUGGENBERGER G, ZECH W. Dissolved organic carbon control in acid forest soils of the Fichtelgebirge (Germany) as revealed by distribution patterns and structural composition analyses [J]. Geoderma, 1993, 59(1/2/3/4): 109-129.
[41] KALBITZ K, SCHWESIG D, RETHEMEYER J, et al. Stabilization of dissolved organic matter by sorption to the mineral soil [J]. Soil Biology and Biochemistry, 2005, 37(7): 1319-1331. doi: 10.1016/j.soilbio.2004.11.028
[42] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review [J]. Soil Science, 2000, 165(4): 277-304. doi: 10.1097/00010694-200004000-00001
[43] 王伟. 疏水性有机污染物在水-土/沉积物体系中的环境行为与归趋[D]. 杭州: 浙江大学, 2011. WANG W. Environmental fate and behavior of hydrophobic organic compounds (HOCs) in water-sediment/soil system[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[44] 雷沛, 张洪, 王超, 等. 沉积物水界面污染物迁移扩散的研究进展 [J]. 湖泊科学, 2018, 30(6): 1489-1508. doi: 10.18307/2018.0602 LEI P, ZHANG H, WANG C, et al. Migration and diffusion for pollutants across the sediment-water interface in lakes: A review [J]. Journal of Lake Sciences, 2018, 30(6): 1489-1508(in Chinese). doi: 10.18307/2018.0602