[1] ANDERSON J C, DUBETZ C, PALACE V P. Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects [J]. Science of the Total Environment, 2015, 505: 409-422. doi: 10.1016/j.scitotenv.2014.09.090
[2] ZHU X M, CHEN B L, ZHU L Z, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review [J]. Environmental Pollution, 2017, 227: 98-115. doi: 10.1016/j.envpol.2017.04.032
[3] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071
[4] TOMIZAWA M, CASIDA J E. Molecular Recognition of Neonicotinoid Insecticides: The Determinants of Life or Death [J]. Accounts of Chemical Research, 2009, 42(2): 260-269. doi: 10.1021/ar800131p
[5] TOMIZAWA M, CASIDA J E. Unique Neonicotinoid Binding Conformations Conferring Selective Receptor Interactions [J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2825-2828. doi: 10.1021/jf1019455
[6] ZHANG P, REN C, SUN H W, et al. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms [J]. Science of the Total Environment, 2018, 615: 59-69. doi: 10.1016/j.scitotenv.2017.09.097
[7] ZHANG P, SUN H W, REN C, et al. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption [J]. Environmental Pollution, 2018, 234: 812-820. doi: 10.1016/j.envpol.2017.12.013
[8] JESCHKE P, NAUEN R, SCHINDLER M, et al. Overview of the Status and Global Strategy for Neonicotinoids [J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2897-2908. doi: 10.1021/jf101303g
[9] RUNDLÖF M, ANDERSSON G K S, BOMMARCO R, et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees [J]. Nature, 2015, 521(7550): 77-80. doi: 10.1038/nature14420
[10] MORRISSEY C A, MINEAU P, DEVRIES J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review [J]. Environment International, 2015, 74: 291-303. doi: 10.1016/j.envint.2014.10.024
[11] TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects [J]. Reviews in Environmental Science and Bio-Technology, 2020, 19(1): 191-215. doi: 10.1007/s11157-020-09523-3
[12] 姜志翔, 郑浩, 李锋民, 等. 生物炭碳封存技术研究进展 [J]. 环境科学, 2013, 34(8): 3327-3333. doi: 10.13227/j.hjkx.2013.08.036 JIANG Z X, ZHENG H, LI F M, et al. Research Progress on Biochar Carbon Sequestration Technology [J]. Environmental Science, 2013, 34(8): 3327-3333(in Chinese). doi: 10.13227/j.hjkx.2013.08.036
[13] HU B W, AI Y J, JIN J, et al. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials [J]. Biochar, 2020, 2(1): 47-64. doi: 10.1007/s42773-020-00044-4
[14] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review [J]. Journal of Cleaner Production, 2019, 227: 1002-1022. doi: 10.1016/j.jclepro.2019.04.282
[15] YANG J, PAN B, LI H, et al. Degradation of p-Nitrophenol on Biochars: Role of Persistent Free Radicals [J]. Environmental Science & Technology, 2016, 50(2): 694-700.
[16] MASIELLO C A, CHEN Y, GAO X D, et al. Biochar and Microbial Signaling: Production Conditions Determine Effects on Microbial Communication [J]. Environmental Science & Technology, 2013, 47(20): 11496-11503.
[17] YANG F, ZHANG W, LI J M, et al. The enhancement of atrazine sorption and microbial transformation in biochars amended black soils [J]. Chemosphere, 2017, 189: 507-516. doi: 10.1016/j.chemosphere.2017.09.022
[18] SUN D Q, MENG J, LIANG H, et al. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities [J]. Journal of Soils and Sediments, 2015, 15(2): 271-281. doi: 10.1007/s11368-014-0996-z
[19] UCHIMIYA M, WARTELLE L H, LIMA I M, et al. Sorption of deisopropylatrazine on broiler litter biochars [J]. Journal of Agricultural and Food Chemistry, 2010, 58(23): 12350-12356. doi: 10.1021/jf102152q
[20] JIN J, KANG M J, SUN K, et al. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine [J]. Science of the Total Environment, 2016, 550: 504-513. doi: 10.1016/j.scitotenv.2016.01.117
[21] LI X, LUO J W, DENG H, et al. Effect of cassava waste biochar on sorption and release behavior of atrazine in soil [J]. Science of the Total Environment, 2018, 644: 1617-1624. doi: 10.1016/j.scitotenv.2018.07.239
[22] GAO Y, JIANG Z, LI J J, et al. A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust [J]. Environmental Research, 2019, 172: 561-568. doi: 10.1016/j.envres.2019.03.010
[23] XIAO F, PIGNATELLO J J. Interactions of triazine herbicides with biochar: Steric and electronic effects [J]. Water Research, 2015, 80: 179-188. doi: 10.1016/j.watres.2015.04.040
[24] BRAIDA W J, PIGNATELLO J J, LU Y F, et al. Sorption Hysteresis of Benzene in Charcoal Particles [J]. Environmental Science & Technology, 2003, 37(2): 409-417.
[25] NGUYEN T H, CHO H H, POSTER D L, et al. Evidence for a Pore-Filling Mechanism in the Adsorption of Aromatic Hydrocarbons to a Natural Wood Char [J]. Environmental Science & Technology, 2007, 41(4): 1212-1217.
[26] WANG P P, LIU X G, YU B C, et al. Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution [J]. Science of the Total Environment, 2020, 702: 134767. doi: 10.1016/j.scitotenv.2019.134767
[27] ZHANG P, SUN H W, MIN L J, et al. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms [J]. Environmental Pollution, 2018, 236: 158-167. doi: 10.1016/j.envpol.2018.01.030
[28] LI J, LIANG N, JIN X Q, et al. The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes [J]. Chemosphere, 2017, 171: 66-73. doi: 10.1016/j.chemosphere.2016.12.041
[29] ZHANG P, SUN H W, YU L, et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars [J]. Journal of Hazardous Materials, 2013, 244-245: 217-224. doi: 10.1016/j.jhazmat.2012.11.046
[30] PIGNATELLO J J, KWON S, LU Y. Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char): Attenuation of Surface Activity by Humic and Fulvic Acids [J]. Environmental Science & Technology, 2006, 40(24): 7757-7763.
[31] WANG T T, LI Y S, JIANG A C, et al. Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems [J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(3): 401-406. doi: 10.1007/s00128-015-1541-5
[32] YU X Y, MU C L, GU C, et al. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils [J]. Chemosphere, 2011, 85(8): 1284-1289. doi: 10.1016/j.chemosphere.2011.07.031
[33] ZHANG H H, LIN K D, WANG H L, et al. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene [J]. Environmental Pollution, 2010, 158(9): 2821-2825. doi: 10.1016/j.envpol.2010.06.025
[34] REN X H, WANG F, ZHANG P, et al. Aging effect of minerals on biochar properties and sorption capacities for atrazine and phenanthrene [J]. Chemosphere, 2018, 206: 51-58. doi: 10.1016/j.chemosphere.2018.04.125
[35] CHEN B L, ZHOU D D, ZHU L Z. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine needles with Different Pyrolytic Temperatures [J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
[36] ZHANG G X, ZHANG Q, SUN K, et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures [J]. Environmental Pollution, 2011, 159(10): 2594-2601. doi: 10.1016/j.envpol.2011.06.012
[37] XIAO F, PIGNATELLO J J. π+−π Interactions between (Hetero)aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials [J]. Environmental Science & Technology, 2015, 49(2): 906-914.
[38] LIU Y Y, SOHI S P, JING F Q, et al. Oxidative ageing induces change in the functionality of biochar and hydrochar: Mechanistic insights from sorption of atrazine [J]. Environmental Pollution, 2019, 249: 1002-1010. doi: 10.1016/j.envpol.2019.03.035
[39] HUANG W L, PENG P A, YU Z Q, et al. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments [J]. Applied Geochemistry, 2003, 18(7): 955-972. doi: 10.1016/S0883-2927(02)00205-6
[40] PIGNATELLO J J, XING B S. Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles [J]. Environmental Science & Technology, 1996, 30(1): 1-11.
[41] SANDER M, PIGNATELLO J J. An Isotope Exchange Technique to Assess Mechanisms of Sorption Hysteresis Applied to Naphthalene in Kerogenous Organic Matter [J]. Environmental Science & Technology, 2005, 39(19): 7476-7484.
[42] MARTIN S M, KOOKANA R S, ZWIETEN V L, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil [J]. Journal of Hazardous Materials, 2012, 231-232: 70-78. doi: 10.1016/j.jhazmat.2012.06.040
[43] MENDES K F, SOUSA R N, GOULART M O, et al. Role of raw feedstock and biochar amendments on sorption-desorption and leaching potential of three 3H- and 14C-Iabelled pesticides in soils [J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(3): 1373-1386. doi: 10.1007/s10967-020-07128-2
[44] KHORRAM M S, SARMAH A K, YU Y L. The Effects of Biochar Properties on Fomesafen Adsorption-Desorption Capacity of Biochar-Amended Soil [J]. Water, Air, & Soil Pollution, 2018, 229(3): 60.
[45] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures [J]. Bioresource Technology, 2011, 102(3): 3488-3497. doi: 10.1016/j.biortech.2010.11.018
[46] YUAN Y, BOLAN N, PRÉVOTEAU A, et al. Applications of biochar in redox-mediated reactions [J]. Bioresource Technology, 2017, 246: 271-281. doi: 10.1016/j.biortech.2017.06.154
[47] KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox Properties of Plant Biomass-Derived Black Carbon (Biochar) [J]. Environmental Science & Technology, 2014, 48(10): 5601-5611.
[48] PRÉVOTEAU A, RONSSE F, CID I, et al. The electron donating capacity of biochar is dramatically underestimated [J]. Scientific Reports, 2016, 6: 32870. doi: 10.1038/srep32870
[49] OH S Y, SON J G, CHIU P C. Biochar-mediated reductive transformation of nitro herbicides and explosives [J]. Environmental Toxicology and Chemistry, 2013, 32(3): 501-508. doi: 10.1002/etc.2087
[50] PAN B, LI H, LANG D, et al. Environmentally persistent free radicals: Occurrence, formation mechanisms and implications [J]. Environmental Pollution, 2019, 248: 320-331. doi: 10.1016/j.envpol.2019.02.032
[51] FANG G D, ZHU C Y, DIONYSIOU D D, et al. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation [J]. Bioresource Technology, 2015, 176: 210-217. doi: 10.1016/j.biortech.2014.11.032
[52] LIAO S H, PAN B, LI H, et al. Detecting Free Radicals in Biochars and Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice Seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587.
[53] FANG G D, LIU C, GAO J, et al. Manipulation of Persistent Free Radicals in Biochar to Activate Persulfate for Contaminant Degradation [J]. Environmental Science & Technology, 2015, 49(9): 5645-5653.
[54] DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals [J]. Proceedings of the Combustion Institute, 2007, 31(1): 521-528. doi: 10.1016/j.proci.2006.07.172
[55] 冯慧琳, 徐辰生, 何欢辉, 等. 生物炭对土壤酶活和细菌群落的影响及其作用机制 [J]. 环境科学, 2021, 42(1): 422-432. doi: 10.13227/j.hjkx.202005285 FENG H L, XU C S, HE H H, et al. Effect of Biochar on Soil Enzyme Activity & the Bacterial Community and Its Mechanism [J]. Environmental Science, 2021, 42(1): 422-432(in Chinese). doi: 10.13227/j.hjkx.202005285
[56] LU T Q, MAO S Y, SUN S L, et al. Regulation of Hydroxylation and Nitroreduction Pathways during Metabolism of the Neonicotinoid Insecticide Imidacloprid by Pseudomonas putida [J]. Journal of Agricultural and Food Chemistry, 2016, 64(24): 4866-4875. doi: 10.1021/acs.jafc.6b01376
[57] LIU Z H, DAI Y J, HUANG G D, et al. Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application [J]. Pest Management Science, 2011, 67(10): 1245-1252. doi: 10.1002/ps.2174
[58] NAUEN R, EBBINGHAUS-KINTSCHER U, SALGADO V L, et al. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants [J]. Pesticide Biochemistry and Physiology, 2003, 76(2): 55-69. doi: 10.1016/S0048-3575(03)00065-8
[59] DING Y, LIU Y G, LIU S B, et al. Biochar to improve soil fertility. A review [J]. Agronomy for Sustainable Development, 2016, 36(2): 36. doi: 10.1007/s13593-016-0372-z
[60] EL-NAGGAR A, EL-NAGGAR A H, SHAHEEN S M, et al. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review [J]. Journal of Environmental Management, 2019, 241: 458-467.
[61] LIU Z H, DAI Y J, HUAN Y, et al. Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia [J]. Applied Microbiology and Biotechnology, 2013, 97(14): 6537-6547. doi: 10.1007/s00253-012-4444-y
[62] PANDEY G, DORRIAN S J, RUSSELL R J, et al. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G [J]. Biochemical and Biophysical Research Communications, 2009, 380(3): 710-714. doi: 10.1016/j.bbrc.2009.01.156
[63] MA Y, ZHAI S, MAO S Y, et al. Co-metabolic transformation of the neonicotinoid insecticide imidacloprid by the new soil isolate Pseudoxanthomonas indica CGMCC 6648 [J]. Journal of Environmental Science and Health, Part B:Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49(9): 661-670.
[64] GUPTA M, MATHUR S, SHARMA T K, et al. A study on metabolic prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen [J]. Journal of Hazardous Materials, 2016, 301: 250-258. doi: 10.1016/j.jhazmat.2015.08.055
[65] DAI Y J, JI W W, CHEN T, et al. Metabolism of the Neonicotinoid Insecticides Acetamiprid and Thiacloprid by the Yeast Rhodotorula mucilaginosa strain IM-2 [J]. Journal of Agricultural and Food Chemistry, 2010, 58(4): 2419-2425. doi: 10.1021/jf903787s
[66] WANG G L, YUE W L, LIU Y, et al. Biodegradation of the neonicotinoid insecticide Acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil [J]. Bioresource Technology, 2013, 138: 359-368. doi: 10.1016/j.biortech.2013.03.193
[67] CHEN T, DAI Y J, DING J F, et al. N-demethylation of neonicotinoid insecticide acetamiprid by bacterium Stenotrophomonas maltophilia CGMCC 1.1788 [J]. Biodegradation, 2008, 19(5): 651-658. doi: 10.1007/s10532-007-9170-2
[68] ZHANG H J, ZHOU Q W, ZHOU G C, et al. Biotransformation of the Neonicotinoid Insecticide Thiacloprid by the Bacterium Variovorax boronicumulans strain J1 and Mediation of the Major Metabolic Pathway by Nitrile Hydratase [J]. Journal of Agricultural and Food Chemistry, 2012, 60(1): 153-159. doi: 10.1021/jf203232u
[69] ZHAO Y J, DAI Y J, YU C G, et al. Hydroxylation of thiacloprid by bacterium Stenotrophomonas maltophilia CGMCC1.1788 [J]. Biodegradation, 2009, 20(6): 761-768. doi: 10.1007/s10532-009-9264-0
[70] GE F, ZHOU L Y, WANG Y, et al. Hydrolysis of the neonicotinoid insecticide thiacloprid by the N2-fixing bacterium Ensifer meliloti CGMCC 7333 [J]. International Biodeterioration & Biodegradation, 2014, 93: 10-17.
[71] DAI Y J, ZHAO Y J, ZHANG W J, et al. Biotransformation of thianicotinyl neonicotinoid insecticides: Diverse molecular substituents response to metabolism by bacterium Stenotrophomonas maltophilia CGMCC 1.1788 [J]. Bioresource Technology, 2010, 101(11): 3838-3843. doi: 10.1016/j.biortech.2010.01.069
[72] XIONG B J, ZHANG Y C, HOU Y W, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar [J]. Chemosphere, 2017, 182: 316-324. doi: 10.1016/j.chemosphere.2017.05.020
[73] 易鹏, 吴国娟, 段文焱, 等. 生物炭的改性和老化及环境效应的研究进展 [J]. 材料导报, 2020, 34(2): 3037-3043. doi: 10.11896/cldb.19030080 YI P, WU G J, DUAN W Y, et al. Research Progress on Modification and Aging of Biochar and Its Environmental Implications [J]. Materials Reports, 2020, 34(2): 3037-3043(in Chinese). doi: 10.11896/cldb.19030080
[74] QIAO L, WEN D H, WANG J L. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon [J]. Bioresource Technology, 2010, 101(14): 5229-5234. doi: 10.1016/j.biortech.2010.02.059
[75] GAO X D, CHENG H Y, VALLE I D, et al. Charcoal Disrupts Soil microbial Communication through a Combination of Signal Sorption and Hydrolysis [J]. ACS Omega, 2016, 1(2): 226-233. doi: 10.1021/acsomega.6b00085
[76] DECHO A W, FREY R L, FERRY J L. Chemical Challenges to Bacterial AHL Signaling in the Environment [J]. Chemical Reviews, 2011, 111(1): 86-99. doi: 10.1021/cr100311q