[1] |
MICHAEL S, MONTAG M, DOTT W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter [J]. Environmental Pollution, 2013, 183: 19-29. doi: 10.1016/j.envpol.2013.01.026
|
[2] |
舒嫒嫒, 柏荣耀, 石俊豪, 等. 孝感市开放源扬尘重金属污染特征、来源及健康风险评价 [J]. 环境化学, 2022, 41(2): 499-510. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021042302
SHU A A, BAI R Y, SHI J H, et al. Pollution characteristics, sources and health risk assessment of heavy metals in open-source dusts in Xiaogan City [J]. Environmental Chemistry, 2022, 41(2): 499-510(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2021042302
|
[3] |
徐雪梅, 冯小琼, 陈军辉, 等. 攀枝花市PM2.5中金属元素污染特征及健康风险评估 [J]. 环境化学, 2021, 40(9): 2780-2788. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020052702
XU X M, FENG X Q, CHEN J H, et al. Pollution characteristic and health risk assessment of metal elements in PM2.5 of Panzhihua City [J]. Environmental Chemistry, 2021, 40(9): 2780-2788(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020052702
|
[4] |
DENG J J, ZHANG Y R, QIU Y Q, et al. Source apportionment of PM2.5 at the Lin'an regional background site in China with three receptor models [J]. Atmospheric Research, 2018, 202: 23-32. doi: 10.1016/j.atmosres.2017.11.017
|
[5] |
PAATERO P. Least squares formulation of robust non-negative factor analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. doi: 10.1016/S0169-7439(96)00044-5
|
[6] |
SUN J, ZHAO M, HUANG J L, et al. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127116.
|
[7] |
LIU B S, WU J H, WANG J, et al. Chemical characteristics and sources of ambient PM2.5 in a harbor area: Quantification of health risks to workers from source-specific selected toxic elements [J]. Environmental Pollution, 2021, 268: 115926. doi: 10.1016/j.envpol.2020.115926
|
[8] |
HUANG J H, GUO S T, ZENG G M, et al. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use [J]. Environmental Pollution, 2018, 243: 49-58. doi: 10.1016/j.envpol.2018.08.038
|
[9] |
PENG X, SHI G L, LIU G R, et al. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model [J]. Environmental Pollution, 2017, 221: 335-342. doi: 10.1016/j.envpol.2016.11.083
|
[10] |
GUO P, LI H, ZHANG G, et al. Contaminated site-induced health risk using Monte Carlo simulation: evaluation from the brownfield in Beijing, China [J]. Environmental Science and Pollution Research International, 2021, 28(20): 25166-25178. doi: 10.1007/s11356-021-12429-4
|
[11] |
PIRSAHEB M, HADEI M, SHARAFI K. Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran - Uncertainty and sensitivity analysis [J]. Journal of Food Composition and Analysis, 2021, 96: 103697. doi: 10.1016/j.jfca.2020.103697
|
[12] |
LEI M, LI K, GUO G, et al. Source-specific health risks apportionment of soil potential toxicity elements combining multiple receptor models with Monte Carlo simulation [J]. Science of the Total Environment, 2022, 817: 152899. doi: 10.1016/j.scitotenv.2021.152899
|
[13] |
ACHARJEE A, AHMED Z, KUMAR P, et al. Assessment of the ecological risk from heavy metals in the surface sediment of river Surma, Bangladesh: Coupled approach of Monte Carlo simulation and Multi-Component statistical analysis [J]. Water, 2022, 14(2): 180. doi: 10.3390/w14020180
|
[14] |
MULLER G. Index of geoaccumulation in sediments of the Rhine river [J]. GeoJournal, 1969, 2(3): 108-118.
|
[15] |
魏复盛. 中国土壤元素背景值(第2版)[M]. 北京: 中国环境科学出版社, 1990: 94-483.
WEI F S. Background values of soil elements in China (2nd edition)[M]. Beijing: China Environmental Science Press, 1990: 94-483 (in Chinese).
|
[16] |
刘玥, 郭文强, 武晔秋. 基于PMF模型的大同市城区公园地表灰尘中重金属污染评价及来源解析 [J]. 环境化学, 2022, 41(5): 1616-1628. doi: 10.7524/j.issn.0254-6108.2021091103
LIU Y, GUO W Q, WU Y Q. Pollution assessment and source analysis of surface dust heavy metals in parks of Datong city based on Positive matrix factorization model [J]. Environmental Chemistry, 2022, 41(5): 1616-1628(in Chinese). doi: 10.7524/j.issn.0254-6108.2021091103
|
[17] |
PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203
|
[18] |
US EPA. Risk assessment guidance for superfund, volume I: human health evaluation manual (Part A)[R]. Washington DC: USEPA, 1989.
|
[19] |
US EPA. Risk assessment guidance for superfund, volume I: human health evaluation manual (Part F, supplemental guidance for inhalation risk assessment)[R]. Washington DC: USEPA, 2009.
|
[20] |
US EPA. User's guide/technical background document for US EPA region 9's RSL (regional screening levels) tables[R]. Washington DC: USEPA, 2022.
|
[21] |
LI H M, WANG Q G, SHAO M, et al. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China[J]. Environmental Pollution, 2016, 208(Part B): 655-662.
|
[22] |
HUANG L, BAI Y H, MA R Y, et al. Winter chemical partitioning of metals bound to atmospheric fine particles in Dongguan, China, and its health risk assessment [J]. Environmental Science and Pollution Research, 2019, 26(13): 13664-13675. doi: 10.1007/s11356-019-05001-8
|
[23] |
HUANG J L, WU Y Y, SUN J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model [J]. Journal of Hazardous Materials, 2021, 415: 125629. doi: 10.1016/j.jhazmat.2021.125629
|
[24] |
鲍昱璇, 谢海燕, 张一龙, 等. 和田市夏季PM2.5、PM10元素污染特征及健康风险评价 [J]. 环境科学与技术, 2022, 45(1): 154-162.
BAO Y X, XIE H Y, ZHANG Y L, et al. PM2.5 and PM10 pollution characteristics during summer in Hotan City and relevant health risk assessment [J]. Environmental Science & Technology, 2022, 45(1): 154-162(in Chinese).
|
[25] |
HE W H, MENG H, HAN J, et al. Spatiotemporal PM2.5 estimations in China from 2015 to 2020 using an improved gradient boosting decision tree [J]. Chemosphere, 2022, 296: 134003. doi: 10.1016/j.chemosphere.2022.134003
|
[26] |
苏都尔·克热木拉, 伊丽米热·阿布达力木, 迪丽努尔·塔力甫. 乌鲁木齐市采暖期大气PM2.5-10、PM2.5中重金属和多环芳烃的分布及其相关性 [J]. 环境化学, 2013, 32(4): 706-707. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2013.04.028
SUDUR K, IRIMIJE A, DILINUL T. Distribution and correlation of heavy metals and polycyclic aromatic hydrocarbons in atmospheric PM2.5-10, PM2.5 during the heating period in Urumqi city [J]. Environmental Chemistry, 2013, 32(4): 706-707(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2013.04.028
|
[27] |
王伟, 张静, 姬亚芹, 等. 鞍山市夏季PM2.5中元素污染特征与来源初探 [J]. 南开大学学报(自然科学版), 2015, 48(1): 34-39.
WANG W, ZHANG J, JI Y Q, et al. The preliminary exploration of pollution characteristics and sources of elements in PM2.5 during summer in Anshan city [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(1): 34-39(in Chinese).
|
[28] |
张静, 姬亚芹, 王伟, 等. 应用地累积指数评价鞍山市夏季PM2.5中元素的污染 [J]. 环境工程学报, 2016, 10(5): 2551-2556.
ZHANG J, JI Y Q, WANG W, et al. Applying the geoaccumulation index to evaluate element pollution of PM2.5 in Anshan city during summer [J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2551-2556(in Chinese).
|
[29] |
谢忱, 杨文, 张文杰, 等. 中国23城市PM2.5载带典型重金属的污染特征及健康风险评价研究 [J]. 环境与健康杂志, 2019, 36(8): 693-702,753.
XIE C, YANG W, ZHANG W J, et al. Pollution characteristics and health risk assessment of heavy metals in PM2.5 in 23 Chinese cities [J]. Journal of Environment and Health, 2019, 36(8): 693-702,753(in Chinese).
|
[30] |
GALVÃO E S, DE CASSIA FERONI R, D’AZEREDO ORLANDO M T. A review of the main strategies used in the interpretation of similar chemical profiles yielded by receptor models in the source apportionment of particulate matter [J]. Chemosphere, 2021, 269: 128746. doi: 10.1016/j.chemosphere.2020.128746
|
[31] |
LIN Y C, HSU S C, CHOU C C K, et al. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals [J]. Environmental Pollution, 2016, 208: 284-293. doi: 10.1016/j.envpol.2015.07.044
|
[32] |
FABRETTI J F, SAURET N, GAL J F, et al. Elemental characterization and source identification of PM2.5 using Positive Matrix Factorization: The Malraux road tunnel, Nice, France [J]. Atmospheric Research, 2009, 94(2): 320-329. doi: 10.1016/j.atmosres.2009.06.010
|
[33] |
CRILLEY L R, LUCARELLI F, BLOSS W J, et al. Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign [J]. Environmental Pollution, 2017, 220: 766-778. doi: 10.1016/j.envpol.2016.06.002
|
[34] |
韩力慧, 张鹏, 张海亮, 等. 北京市大气细颗粒物污染与来源解析研究 [J]. 中国环境科学, 2016, 36(11): 3203-3210.
HAN L H, ZHANG P, ZHANG H L, et al. Pollution and source apportionment of atmospheric fine particles in Beijing [J]. China Environmental Science, 2016, 36(11): 3203-3210(in Chinese).
|
[35] |
田莎莎, 张显, 卞思思, 等. 沈阳市PM2.5污染组分特征及其来源解析 [J]. 中国环境科学, 2019, 39(2): 487-496.
TIAN S S, ZHANG X, BIAN S S, et al. Characteristics of PM2.5 pollution components and their sources in Shenyang [J]. China Environmental Science, 2019, 39(2): 487-496(in Chinese).
|
[36] |
SAH D, VERMA P K, KUMARI K M, et al. Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway [J]. Environmental Geochemistry and Health, 2019, 41: 1445-1458. doi: 10.1007/s10653-018-0223-8
|
[37] |
ZHAO S, TIAN H Z, LUO L N, et al. Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018-2019 [J]. Environmental Pollution, 2021, 268: 115856. doi: 10.1016/j.envpol.2020.115856
|
[38] |
伊犁哈萨克自治州人民政府. 伊犁哈萨克自治州2021年国民经济和社会发展统计公报[R]. 伊犁: 伊犁哈萨克自治州人民政府, 2022.
THE PEOPLE'S GOVERNMENT OF ILI KAZAK AUTONOMOUS PREFECTURE. Statistical bulletin of national economic and social development of Ili Kazak Autonomous Prefecture in 2021[R]. Ili: Ili Kazak Autonomous Prefecture People's government, 2022 (in Chinese).
|