[1] WANIA F, MACKAY D. Peer reviewed: Tracking the distribution of persistent organic pollutants [J]. Environmental Science & Technology, 1996, 30(9): 390A-396A.
[2] COUSINS I T, BECK A J, JONES K C. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air–soil interface [J]. Science of the Total Environment, 1999, 228(1): 5-24. doi: 10.1016/S0048-9697(99)00015-7
[3] 王小萍, 孙殿超, 姚檀栋. 气候变化与持久性有机污染物全球循环 [J]. 中国科学(地球科学), 2016, 46(10): 1301-1316. WANG X P, SUN D C, YAO T D. Climate change and global cycling of persistent organic pollutants: A critical review [J]. Scientia Sinica (Terrae), 2016, 46(10): 1301-1316(in Chinese).
[4] CABRERIZO A, MUIR D, de SILVA A O, et al. Legacy and emerging persistent organic pollutants (POPs) in terrestrial compartments in the high Arctic: Sorption and secondary sources [J]. Environmental Science & Technology, 2018, 52(24): 14187-14197.
[5] GONG P, WANG X P. Critical roles of secondary sources in global cycling of persistent organic pollutants under climate change [J]. Journal of Hazardous Materials Advances, 2022, 6: 100064. doi: 10.1016/j.hazadv.2022.100064
[6] DING Y, LI L, WANIA F, et al. Do dissipation and transformation of γ-HCH and p, p’-DDT in soil respond to a proxy for climate change?Insights from a field study on the eastern Tibetan Plateau [J]. Environmental Pollution, 2021, 278: 116824. doi: 10.1016/j.envpol.2021.116824
[7] MARQUÈS M, MARI M, AUDÍ-MIRÓ C, et al. Climate change impact on the PAH photodegradation in soils: Characterization and metabolites identification [J]. Environment International, 2016, 89/90: 155-165. doi: 10.1016/j.envint.2016.01.019
[8] HEBERER T, DÜNNBIER U. DDT metabolite bis(chlorophenyl)acetic acid: The neglected environmental contaminant [J]. Environmental Science & Technology, 1999, 33(14): 2346-2351.
[9] MARQUÈS M, MARI M, SIERRA J, et al. Solar radiation as a swift pathway for PAH photodegradation: A field study [J]. The Science of the Total Environment, 2017, 581/582: 530-540. doi: 10.1016/j.scitotenv.2016.12.161
[10] IPCC. AR6 Climate Change 2021: The Physical Science Basis[EB/OL]. 2021. [2022-05-01]. https://www.ipcc.ch/report/ar6/wg1/.
[11] UNEP. Climate Change and POPs: Predicting the Impacts. Report of the UNEP/AMAP Expert Group[EB/OL]. 2011. [2022-05-01]. https://www.amap.no/documents/download/3237/inline.
[12] BISWAS B, QI F J, BISWAS J K, et al. The fate of chemical pollutants with soil properties and processes in the climate change paradigm—A review [J]. Soil Systems, 2018, 2(3): 51. doi: 10.3390/soilsystems2030051
[13] DING Y, LI L, WANIA F, et al. Formation of non-extractable residues as a potentially dominant process in the fate of PAHs in soil: Insights from a combined field and modeling study on the eastern Tibetan Plateau [J]. Environmental Pollution, 2020, 267: 115383. doi: 10.1016/j.envpol.2020.115383
[14] YU Y, KATSOYIANNIS A, BOHLIN-NIZZETTO P, et al. Polycyclic aromatic hydrocarbons not declining in Arctic air despite global emission reduction [J]. Environmental Science & Technology, 2019, 53(5): 2375-2382.
[15] NOYES P D, MCELWEE M K, MILLER H D, et al. The toxicology of climate change: Environmental contaminants in a warming world [J]. Environment International, 2009, 35(6): 971-986. doi: 10.1016/j.envint.2009.02.006
[16] MA J M, HUNG H, TIAN C G, et al. Revolatilization of persistent organic pollutants in the Arctic induced by climate change [J]. Nature Climate Change, 2011, 1(5): 255-260. doi: 10.1038/nclimate1167
[17] LOHMANN R, BREIVIK K, DACHS J, et al. Global fate of POPs: Current and future research directions [J]. Environmental Pollution, 2007, 150(1): 150-165. doi: 10.1016/j.envpol.2007.06.051
[18] KOBLIŽKOVÁ M, RŮŽIČKOVÁ P, ČUPR P, et al. Soil burdens of persistent organic pollutants: Their levels, fate, and risks. part IV. quantification of volatilization fluxes of organochlorine pesticides and polychlorinated biphenyls from contaminated soil surfaces [J]. Environmental Science & Technology, 2009, 43(10): 3588-3595.
[19] 任娇, 王小萍, 龚平, 等. 持久性有机污染物气—土界面交换研究进展 [J]. 地理科学进展, 2013, 32(2): 288-10,15. doi: 10.11820/dlkxjz.2013.02.015 REN J, WANG X P, GONG P, et al. Research progress on exchange of persistent organic pollutants at the air-soil interface [J]. Progress in Geography, 2013, 32(2): 288-10,15(in Chinese). doi: 10.11820/dlkxjz.2013.02.015
[20] LAMMEL G, DEGRENDELE C, GUNTHE S S, et al. Revolatilisation of soil-accumulated pollutants triggered by the summer monsoon in India [J]. Atmospheric Chemistry and Physics, 2018, 18(15): 11031-11040. doi: 10.5194/acp-18-11031-2018
[21] RŮŽIČKOVÁ P, KLÁNOVÁ J, CUPR P, et al. An assessment of air-soil exchange of polychlorinated biphenyls and organochlorine pesticides across central and southern Europe [J]. Environmental Science & Technology, 2008, 42(1): 179-185.
[22] LI Y F, HARNER T, LIU L Y, et al. Polychlorinated biphenyls in global air and surface soil: Distributions, air-soil exchange, and fractionation effect [J]. Environmental Science & Technology, 2010, 44(8): 2784-2790.
[23] ZHANG Q Y, WANG Y, ZHANG C, et al. A review of organophosphate esters in soil: Implications for the potential source, transfer, and transformation mechanism[J]. Environmental Research, 2022, 204(Pt B): 112122.
[24] WONG F, BIDLEMAN T F. Aging of organochlorine pesticides and polychlorinated biphenyls in muck soil: Volatilization, bioaccessibility, and degradation [J]. Environmental Science & Technology, 2011, 45(3): 958-963.
[25] HIPPELEIN M, MCLACHLAN M S. Soil/air partitioning of semivolatile organic compounds. 1. method development and influence of physical–chemical properties [J]. Environmental Science & Technology, 1998, 32(2): 310-316.
[26] WONG F, HUNG H, DRYFHOUT-CLARK H, et al. Time trends of persistent organic pollutants (POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic air from 25 years of monitoring [J]. Science of the Total Environment, 2021, 775: 145109. doi: 10.1016/j.scitotenv.2021.145109
[27] WANIA F, WESTGATE J N. On the mechanism of mountain cold-trapping of organic chemicals [J]. Environmental Science & Technology, 2008, 42(24): 9092-9098.
[28] WANG X P, WANG C F, ZHU T T, et al. Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects [J]. Environmental Pollution, 2019, 248: 191-208. doi: 10.1016/j.envpol.2019.01.093
[29] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望 [J]. 地球科学进展, 2022, 37(2): 187-201. CHAI L, WANG X P. Current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau [J]. Advances in Earth Science, 2022, 37(2): 187-201(in Chinese).
[30] REN J, WANG X P, GONG P, et al. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: Seasonal shift and impact of global warming [J]. Environmental Science & Technology, 2019, 53(7): 3589-3598.
[31] CABRERIZO A, DACHS J, BARCELÓ D, et al. Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica [J]. Environmental Science & Technology, 2013, 47(9): 4299-4306.
[32] CABRERIZO A, DACHS J, MOECKEL C, et al. Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil-air partitioning [J]. Environmental Science & Technology, 2011, 45(11): 4740-4747.
[33] DAVIE-MARTIN C L, HAGEMAN K J, CHIN Y P, et al. Influence of temperature, relative humidity, and soil properties on the soil-air partitioning of semivolatile pesticides: Laboratory measurements and predictive models [J]. Environmental Science & Technology, 2015, 49(17): 10431-10439.
[34] LI N Q, WANIA F, LEI Y D, et al. A comprehensive and critical compilation, evaluation, and selection of physical–chemical property data for selected polychlorinated biphenyls [J]. Journal of Physical and Chemical Reference Data, 2003, 32(4): 1545-1590. doi: 10.1063/1.1562632
[35] DAS S, HAGEMAN K J. Influence of adjuvants on pesticide soil–air partition coefficients: Laboratory measurements and predicted effects on volatilization [J]. Environmental Science & Technology, 2020, 54(12): 7302-7308.
[36] DEGRENDELE C, AUDY O, HOFMAN J, et al. Diurnal variations of air-soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a central European receptor area [J]. Environmental Science & Technology, 2016, 50(8): 4278-4288.
[37] HELLSING M S, JOSEFSSON S, HUGHES A V, et al. Sorption of perfluoroalkyl substances to two types of minerals [J]. Chemosphere, 2016, 159: 385-391. doi: 10.1016/j.chemosphere.2016.06.016
[38] KOMPRDA J, KOMPRDOVÁ K, SÁŇKA M, et al. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils [J]. Environmental Science & Technology, 2013, 47(13): 7052-7059.
[39] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006, 440(7081): 165-173. doi: 10.1038/nature04514
[40] HIPPELEIN M, MCLACHLAN M S. Soil/air partitioning of semivolatile organic compounds. 2. influence of temperature and relative humidity [J]. Environmental Science & Technology, 2000, 34(16): 3521-3526.
[41] DENG Y, XU W, ZENG Q H, et al. Effects of temperature and relative humidity on soil-air partition coefficients of organophosphate flame retardants and polybrominated diphenyl ethers[J]. Chemosphere, 2022, 291(Pt 1): 132716.
[42] SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review [J]. Earth-Science Reviews, 2010, 99(3/4): 125-161.
[43] CORNELISSEN G, GUSTAFSSON Ö, BUCHELI T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation [J]. Environmental Science & Technology, 2005, 39(18): 6881-6895.
[44] ALI U, SWEETMAN A J, RIAZ R, et al. Organohalogenated contaminants (OHCs) in high-altitude environments: A review and implication for a black carbon relationship [J]. Critical Reviews in Environmental Science and Technology, 2017, 47(13): 1143-1190. doi: 10.1080/10643389.2017.1345601
[45] 黄焕芳. 青藏高原有机氯农药的大气长距离迁移转化研究[D]. 武汉: 中国地质大学, 2018. HUANG H F. Long-range atmospheric transport and transformations of organochlorine pesticides (OCPs) in the Qinghai-Tibet plateau[D]. Wuhan: China University of Geosciences, 2018 (in Chinese).
[46] KÄSTNER M, NOWAK K M, MILTNER A, et al. Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil–A synthesis [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(19): 2107-2171. doi: 10.1080/10643389.2013.828270
[47] 丁洋, 张原, 黄焕芳, 等. 土壤中持久性有机污染物不可提取态残留的测试方法、生成特征与环境风险研究进展 [J]. 环境化学, 2023, 42(1): 199-212. doi: 10.7524/j.issn.0254-6108.2021091504 DING Y, ZHANG Y, HUANG H F, et al. Determination, formation, and environmental risk of non-extractable residue (NER) of persistent organic pollutants (POPs) in soil: A review [J]. Environmental Chemistry, 2023, 42(1): 199-212(in Chinese). doi: 10.7524/j.issn.0254-6108.2021091504
[48] MA J M, CAO Z H. Quantifying the perturbations of persistent organic pollutants induced by climate change [J]. Environmental Science & Technology, 2010, 44(22): 8567-8573.
[49] HANSEN K M, CHRISTENSEN J H, GEELS C, et al. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic [J]. Atmospheric Chemistry and Physics, 2015, 15(11): 6549-6559. doi: 10.5194/acp-15-6549-2015
[50] WANIA F. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions [J]. Environmental Science & Technology, 2003, 37(7): 1344-1351.
[51] SHEN L, WANIA F. Compilation, evaluation, and selection of physical–chemical property data for organochlorine pesticides [J]. Journal of Chemical & Engineering Data, 2005, 50(3): 742-768.
[52] XIAO H, LI N Q, WANIA F. Compilation, evaluation, and selection of physical-chemical property data for α-, β-, and γ-hexachlorocyclohexane [J]. Journal of Chemical & Engineering Data, 2004, 49(2): 173-185.
[53] 廖洋, 梁海鹏, 黄春萍, 等. 土壤持久性有机污染物控制与修复研究进展 [J]. 四川师范大学学报:自然科学版, 2013, 36(5): 777-786. LIAO Y, LIANG H P, HUANG C P, et al. Recent Development in Control and Remediation of Persistent Organic Pollutants in Soil Environment [J]. Journal of Sichuan Normal University (Natural Science), 2013, 36(5): 777-786(in Chinese).
[54] 丁洋. 青藏高原东缘土壤中典型持久性有机污染物的来源与迁移转化机制[D]. 武汉: 中国地质大学, 2021. DING Y. Source Identification and Mechanisms of Transportation and Transformation of Typical Persistent Organic Pollutants in the Soil from the Eastern Tibetan Plateau[D]. Wuhan: China University of Geosciences, 2021(in Chinese).
[55] 阮哲璞, 徐希辉, 陈凯, 等. 微生物降解持久性有机污染物的研究进展与展望 [J]. 微生物学报, 2020, 60(12): 2763-2784. RUAN Z P, XU X H, CHEN K, et al. Recent advances in microbial catabolism of persistent organic pollutants [J]. Acta Microbiologica Sinica, 2020, 60(12): 2763-2784(in Chinese).
[56] LAL R, PANDEY G, SHARMA P, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation [J]. Microbiology and Molecular Biology Reviews, 2010, 74(1): 58-80. doi: 10.1128/MMBR.00029-09
[57] 陶雪琴, 党志, 卢桂宁, 等. 污染土壤中多环芳烃的微生物降解及其机理研究进展 [J]. 矿物岩石地球化学通报, 2003, 22(4): 356-360. doi: 10.3969/j.issn.1007-2802.2003.04.014 TAO X Q, DANG Z, LU G N, et al. Biodegradation mechanism of polycyclic aromatic hydrocarbons (PAHs) in soil: A review [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(4): 356-360(in Chinese). doi: 10.3969/j.issn.1007-2802.2003.04.014
[58] ZHU X J, DSIKOWITZKY L, KUCHER S, et al. Formation and fate of point-source nonextractable DDT-related compounds on their environmental aquatic-terrestrial pathway [J]. Environmental Science & Technology, 2019, 53(3): 1305-1314.
[59] ZHANG Z M, SARKAR D, BISWAS J K, et al. Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review[J]. Bioresource Technology, 2022, 344(Pt B): 126223.
[60] AREY J, ATKINSON R. Photochemical reactions of PAHs in the atmosphere[M]//PAHs: An Ecotoxicological Perspective. Chichester, UK: John Wiley & Sons, Ltd, : 47-63.
[61] SINKKONEN S, PAASIVIRTA J. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling [J]. Chemosphere, 2000, 40(9/10/11): 943-949.
[62] SCHWARZENBACH R P, GSCHWEND P M, IMBODEN D M. Environmental Organic Chemistry[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 2002.
[63] 张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N沉降的响应 [J]. 植物生态学报, 2007, 31(2): 252-261. doi: 10.17521/cjpe.2007.0029 ZHANG N L, GUO J X, WANG X Y, et al. Soil microbial feedbacks to climate warming and atmospheric n deposition [J]. Chinese Journal of Plant Ecology, 2007, 31(2): 252-261(in Chinese). doi: 10.17521/cjpe.2007.0029
[64] ALKORTA I, EPELDE L, GARBISU C. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation [J]. FEMS Microbiology Letters, 2017, 364(19): fnx200.
[65] OKERE U V, SEMPLE K T. Biodegradation of PAHs in ‘pristine’ soils from different climatic regions [J]. Journal of Bioremediation & Biodegradation, 2012, S1: 006.
[66] BARRIOS R E, AKBARIYEH S, LIU C Y, et al. Climate change impacts the subsurface transport of atrazine and estrone originating from agricultural production activities [J]. Environmental Pollution, 2020, 265: 115024. doi: 10.1016/j.envpol.2020.115024
[67] WHITE J C, KELSEY J W, HATZINGER P B, et al. Factors affecting sequestration and bioavailability of phenanthrene in soils [J]. Environmental Toxicology and Chemistry, 1997, 16(10): 2040-2045. doi: 10.1002/etc.5620161008
[68] BISWAS B, SARKAR B, RUSMIN R, et al. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction [J]. Environment International, 2015, 85: 168-181. doi: 10.1016/j.envint.2015.09.017
[69] YANG Y, ZHANG N, XUE M, et al. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials [J]. Environmental Pollution, 2011, 159(2): 591-595. doi: 10.1016/j.envpol.2010.10.003
[70] 邢维芹, 骆永明, 李立平, 等. 持久性有机污染物的根际修复及其研究方法 [J]. 土壤, 2004, 36(3): 258-263. doi: 10.3321/j.issn:0253-9829.2004.03.006 XING W Q, LUO Y M, LI L P, et al. Rhizosphere remediation from persistent organic pollutants and research approaches [J]. Soils, 2004, 36(3): 258-263(in Chinese). doi: 10.3321/j.issn:0253-9829.2004.03.006
[71] AI F X, EISENHAUER N, JOUSSET A, et al. Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil [J]. Scientific Reports, 2018, 8: 5519. doi: 10.1038/s41598-018-23522-z
[72] CÉBRON A, LOUVEL B, FAURE P, et al. Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates [J]. Environmental Microbiology, 2011, 13(3): 722-736. doi: 10.1111/j.1462-2920.2010.02376.x
[73] USEPA. Chemistry Dashboard[EB/OL]. [2022-05-01]. https://comptox.epa.gov/dashboard.
[74] 刘尘, 牛晓君, 谢贵婷. 大气环境变化对污染土壤中PBDEs自然降解过程的影响研究 [J]. 环境科学学报, 2015, 35(10): 3242-3251. LIU C, NIU X J, XIE G T. Natural degradation process of PBDEs in polluted soil under the changes of atmospheric environment [J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3242-3251(in Chinese).
[75] 张利红, 陈忠林, 徐成斌, 等. 表层土壤中菲的紫外光降解研究 [J]. 农业环境科学学报, 2009, 28(6): 1115-1119. ZHANG L H, CHEN Z L, XU C B, et al. The photodegradation of phenanthrene on soil surface under UV light [J]. Journal of Agro-Environment Science, 2009, 28(6): 1115-1119(in Chinese).
[76] UNEP. Environmental effects of ozone depletion and its interactions with climate change: 2010 Assessment[EB/OL]. 2010. [2022-05-01]. https://www.unep.org/resources/report/environmental-effects-ozone-depletion-and-its-interactions-climate-change-2010.
[77] BAIS A F, MCKENZIE R L, BERNHARD G, et al. Ozone depletion and climate change: Impacts on UV radiation [J]. Photochemical & Photobiological Sciences, 2015, 14: 19-52.
[78] 贾龙, 葛茂发, 徐永福, 等. 大气臭氧化学研究进展 [J]. 化学进展, 2006, 18(11): 1565-1574. doi: 10.3321/j.issn:1005-281X.2006.11.019 JIA L, GE M F, XU Y F, et al. Advances in atmospheric ozone chemistry [J]. Progress in Chemistry, 2006, 18(11): 1565-1574(in Chinese). doi: 10.3321/j.issn:1005-281X.2006.11.019
[79] 张利红, 李培军, 李雪梅, 等. 有机污染物在表层土壤中光降解的研究进展 [J]. 生态学杂志, 2006, 25(3): 318-322. ZHANG L H, LI P J, LI X M, et al. Research advance in photodegradation of organic pollutants in surface soil [J]. Chinese Journal of Ecology, 2006, 25(3): 318-322(in Chinese).
[80] PAN Y H, TSANG D C W, WANG Y Y, et al. The photodegradation of polybrominated diphenyl ethers (PBDEs) in various environmental matrices: Kinetics and mechanisms [J]. Chemical Engineering Journal, 2016, 297: 74-96. doi: 10.1016/j.cej.2016.03.122
[81] 王依雪, 康春莉, 刘汉飞, 等. 模拟太阳光作用下2-氯萘在土壤中的光降解 [J]. 科学技术与工程, 2015, 15(15): 222-224. doi: 10.3969/j.issn.1671-1815.2015.15.042 WANG Y X, KANG C L, LIU H F, et al. Photodegradation of 2-chloronaphthalene in soil under the simulated solar light [J]. Science Technology and Engineering, 2015, 15(15): 222-224(in Chinese). doi: 10.3969/j.issn.1671-1815.2015.15.042
[82] 牛军峰, 余刚, 刘希涛. 水相中POPs光化学降解研究进展 [J]. 化学进展, 2005, 17(5): 938-948. NIU J F, YU G, LIU X T. Advances in photolysis of persistent organic pollutants in water [J]. Progress in Chemistry, 2005, 17(5): 938-948(in Chinese).
[83] 牛军峰, 全燮, 陈景文, 等. 低有机碳含量表层土中Fe2O3对γ-666光解的催化作用 [J]. 环境科学, 2002, 23(2): 92-95. NIU J F, QUAN X, CHEN J W, et al. Effect of Fe2O3 on photodegradation of γ-666 in surface soils with low amount of organic substance [J]. Enviromental Science, 2002, 23(2): 92-95(in Chinese).
[84] LIU J Q, XIANG W R, LI C G, et al. Kinetics and mechanism analysis for the photodegradation of PFOA on different solid particles [J]. Chemical Engineering Journal, 2020, 383: 123115. doi: 10.1016/j.cej.2019.123115
[85] 阎百兴, 汤洁. 黑土侵蚀速率及其对土壤质量的影响 [J]. 地理研究, 2005, 24(4): 499-506. doi: 10.3321/j.issn:1000-0585.2005.04.002 YAN B X, TANG J. Study on black soil erosion rate and the transformation of soil quality influenced by erosion [J]. Geographical Research, 2005, 24(4): 499-506(in Chinese). doi: 10.3321/j.issn:1000-0585.2005.04.002
[86] 潘相敏, 陈立民, 成玉, 等. 气溶胶中多环芳烃光降解的初步研究 [J]. 环境化学, 1999, 18(4): 327-332. PAN X M, CHEN L M, CHENG Y, et al. A preliminary research on photodegradation of pahs in aerosols [J]. Environmental Chemistry, 1999, 18(4): 327-332(in Chinese).
[87] 蔡啸宇. 多氯联苯的光\光敏化降解机理研究[D]. 北京: 华北电力大学(北京), 2016. CAI X Y. Research on the photo and photosensitive degradation of PCBs[D]. Beijing: North China Electric Power University, 2016(in Chinese).
[88] ZALESKA A, HUPKA J, WIERGOWSKI M, et al. Photocatalytic degradation of lindane, p, p'-DDT and methoxychlor in an aqueous environment [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2000, 135(2/3): 213-220.
[89] NGUYEN V H, SMITH S M, WANTALA K, et al. Photocatalytic remediation of persistent organic pollutants (POPs): A review [J]. Arabian Journal of Chemistry, 2020, 13(11): 8309-8337. doi: 10.1016/j.arabjc.2020.04.028
[90] 张红, 吕永龙, 辛晓云, 等. 杀虫剂类POPs对土壤中微生物群落多样性的影响 [J]. 生态学报, 2005, 25(4): 937-942. doi: 10.3321/j.issn:1000-0933.2005.04.041 ZHANG H, LÜ Y L, XIN X Y, et al. Effects of organochlorine pesticides on soil microbial community functional diversity [J]. Acta Ecologica Sinica, 2005, 25(4): 937-942(in Chinese). doi: 10.3321/j.issn:1000-0933.2005.04.041
[91] 武彤, 田柳, 崔建升, 等. 六溴环十二烷对映体对玉米的生理和基因损伤研究 [J]. 环境科学学报, 2018, 38(12): 4864-4872. WU T, TIAN L, CUI J S, et al. Physiological and genetic damage effects of hexabromocyclododecane enantiomers on maize [J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4864-4872(in Chinese).
[92] 罗云, 张保琴, 任晓倩, 等. 氯代多环芳烃的污染现状及毒性研究进展 [J]. 生态毒理学报, 2017, 12(3): 120-134. LUO Y, ZHANG B Q, REN X Q, et al. Advances in the researches on the occurrence and toxicity of chlorinated polycyclic aromatic hydrocarbons [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 120-134(in Chinese).
[93] 胡霞林, 刘景富, 卢士燕, 等. 环境污染物的自由溶解态浓度与生物有效性 [J]. 化学进展, 2009, 21(2/3): 514-523. HU X L, LIU J F, LU S Y, et al. Freely dissolved concentration and bioavailability of environmental pollutants [J]. Progress in Chemistry, 2009, 21(2/3): 514-523(in Chinese).
[94] QU C, QI S, YANG D, et al. Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: A case study from Ningde, southeast China [J]. Journal of Geochemical Exploration, 2015, 149: 43-51. doi: 10.1016/j.gexplo.2014.11.002
[95] ORTEGA-CALVO J J, HARMSEN J, PARSONS J R, et al. From bioavailability science to regulation of organic chemicals [J]. Environmental Science & Technology, 2015, 49(17): 10255-10264.
[96] NADAL M, MARQUÈS M, MARI M, et al. Climate change and environmental concentrations of POPs: A review[J]. Environmental Research, 2015, 143(Pt A): 177-185.
[97] WETTERAUER B, RICKING M, OTTE J C, et al. Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites: DDA, DDMU, DDMS, and DDCN [J]. Environmental Science and Pollution Research, 2012, 19(2): 403-415. doi: 10.1007/s11356-011-0570-9
[98] 黄苑, 苏晓鸥, 王瑞国, 等. 多氯联苯羟基化代谢物及其雌激素效应研究进展 [J]. 生态毒理学报, 2018, 13(5): 58-68. doi: 10.7524/AJE.1673-5897.20180111001 HUANG Y, SU X O, WANG R G, et al. Advances on hydroxylated polychlorinated biphenyls metabolites and the estrogenic effects [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 58-68(in Chinese). doi: 10.7524/AJE.1673-5897.20180111001
[99] 马涛, 孔继婕, 韩孟书, 等. 环境中硝基多环芳烃的污染现状及其毒性效应研究进展 [J]. 环境化学, 2020, 39(9): 2430-2440. doi: 10.7524/j.issn.0254-6108.2019062907 MA T, KONG J J, HAN M S, et al. Review on the pollution status and toxicity effects of nitrated polycyclic aromatic hydrocarbons in the environment [J]. Environmental Chemistry, 2020, 39(9): 2430-2440(in Chinese). doi: 10.7524/j.issn.0254-6108.2019062907