[1] NASSAR H F, TANG N, KAMEDA T, et al. Atmospheric concentrations of polycyclic aromatic hydrocarbons and selected nitrated derivatives in Greater Cairo, Egypt [J]. Atmospheric Environment, 2011, 45(39): 7352-7359. doi: 10.1016/j.atmosenv.2011.07.043
[2] TOKIWA H, OHNISHI Y, ROSENKRANZ H S. Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment [J]. CRC Critical Reviews in Toxicology, 1986, 17(1): 23-58. doi: 10.3109/10408448609037070
[3] 关东杰, 沈振兴, 陈庆彩. 棕碳气溶胶的生消机制研究进展 [J]. 环境化学, 2020, 39(10): 2812-2822. doi: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2019070902 GUAN D J, SHEN Z X, CHEN Q C. Formation and elimination of brown carbon aerosol: A review [J]. Environmental Chemistry, 2020, 39(10): 2812-2822(in Chinese). doi: http://dx.chinadoi.cn/10.7524/j.issn.0254-6108.2019070902
[4] GUO L Q, LIU Z Q, LI P H, et al. Association between mitochondrial DNA methylation and internal exposure to polycyclic aromatic hydrocarbons (PAHs), nitrated-PAHs (NPAHs) and oxygenated-PAHs (OPAHs) in young adults from Tianjin, China [J]. Ecotoxicology and Environmental Safety, 2022, 241: 113799. doi: 10.1016/j.ecoenv.2022.113799
[5] BOSTRÖM C E, GERDE P, HANBERG A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air [J]. Environmental Health Perspectives, 2002, 110(Suppl 3): 451-488. doi: 10.1289/ehp.110-1241197
[6] CHEN Y, HO K F, HO S S H, et al. Gaseous and particulatepolycyclicaromatichydrocarbons (PAHs) emissions from commercial restaurants in Hong kong [J]. Journal of Environmental Monitoring, 2007, 9(12): 1402-1409. doi: 10.1039/b710259c
[7] RAVINDRA K, SOKHI R, van GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation [J]. Atmospheric Environment, 2008, 42(13): 2895-2921. doi: 10.1016/j.atmosenv.2007.12.010
[8] ALBINET A, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys [J]. Atmospheric Environment, 2008, 42(1): 43-54. doi: 10.1016/j.atmosenv.2007.10.009
[9] BOLTON J L, TRUSH M A, PENNING T M, et al. Role of quinones in toxicology [J]. Chemical Research in Toxicology, 2000, 13(3): 135-160. doi: 10.1021/tx9902082
[10] LUNDSTEDT S, WHITE P A, LEMIEUX C L, et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites [J]. Ambio, 2007, 36(6): 475-485. doi: 10.1579/0044-7447(2007)36[475:SFATHO]2.0.CO;2
[11] WILSON N K, MCCURDY T R, CHUANG J C. Concentrations and phase distributions of nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air [J]. Atmospheric Environment, 1995, 29(19): 2575-2584. doi: 10.1016/1352-2310(95)00189-6
[12] TEBES-STEVENS C, PATEL J M, KOOPMANS M, et al. Demonstration of a consensus approach for the calculation of physicochemical properties required for environmental fate assessments [J]. Chemosphere, 2018, 194: 94-106.
[13] CARD M L, GOMEZ-ALVAREZ V, LEE W, et al. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments [J]. Environmental Science-Processes & Impacts, 2017, 19: 203-212.
[14] LIU D, LIN T, SYED J H, et al. Concentration, source identification, and exposure risk assessment of PM2.5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese Cities [J]. Scientific Reports, 2017, 7: 10398. doi: 10.1038/s41598-017-10623-4
[15] LIN Y, MA Y Q, QIU X H, et al. Sources, transformation, and health implications of polycyclic aromatic hydrocarbons (PAHs) and their nitrated, hydroxylated, and oxygenated derivatives in fine particulate matter (PM2.5) in Beijing [J]. Journal of Geophysical Research Atmospheres, 2015, 120(14): 7219-7228. doi: 10.1002/2015JD023628
[16] HUANG B, LIU M, BI X H, et al. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China [J]. Atmospheric Pollution Research, 2014, 5(2): 210-218. doi: 10.5094/APR.2014.026
[17] LI W, WANG C, SHEN H Z, et al. Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in Northern China [J]. Environmental Pollution, 2015, 197: 156-164. doi: 10.1016/j.envpol.2014.12.019
[18] dos SANTOS R R, CARDEAL Z D L, MENEZES H C. Phase distribution of polycyclic aromatic hydrocarbons and their oxygenated and nitrated derivatives in the ambient air of a Brazilian urban area [J]. Chemosphere, 2020, 250: 126223. doi: 10.1016/j.chemosphere.2020.126223
[19] HU H L, TIAN M, ZHANG L M, et al. Sources and gas-particle partitioning of atmospheric parent, oxygenated, and nitrated polycyclic aromatic hydrocarbons in a humid city in southwest China [J]. Atmospheric Environment, 2019, 206: 1-10. doi: 10.1016/j.atmosenv.2019.02.041
[20] ZHANG J M, YANG L X, MELLOUKI A, et al. Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing [J]. Atmospheric Environment, 2018, 173: 256-264. doi: 10.1016/j.atmosenv.2017.11.002
[21] ZHUO S J, DU W, SHEN G F, et al. Urban air pollution and health risks of parent and nitrated polycyclic aromatic hydrocarbons in two megacities, southwest China [J]. Atmospheric Environment, 2017, 166: 441-453. doi: 10.1016/j.atmosenv.2017.07.051
[22] MA L X, LI B, LIU Y P, et al. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in Northern China [J]. Journal of Cleaner Production, 2020, 264: 121673. doi: 10.1016/j.jclepro.2020.121673
[23] LI J S, YANG L X, GAO Y, et al. Seasonal variations of NPAHs and OPAHs in PM2.5 at heavily polluted urban and suburban sites in North China: Concentrations, molecular compositions, cancer risk assessments and sources [J]. Ecotoxicology and Environmental Safety, 2019, 178: 58-65. doi: 10.1016/j.ecoenv.2019.04.009
[24] LI R J, KOU X J, GENG H, et al. Pollution characteristics of ambient PM2.5-bound PAHs and NPAHs in a typical winter time period in Taiyuan [J]. Chinese Chemical Letters, 2014, 25(5): 663-666. doi: 10.1016/j.cclet.2014.03.032
[25] VALLE-HERNÁNDEZ B L, MUGICA-ÁLVAREZ V, SALINAS-TALAVERA E, et al. Temporal variation of nitro-polycyclic aromatic hydrocarbons in PM10 and PM2.5 collected in Northern Mexico City [J]. Science of the Total Environment, 2010, 408(22): 5429-5438. doi: 10.1016/j.scitotenv.2010.07.065
[26] ALBINET A, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): Concentrations and sources [J]. Science of the Total Environment, 2007, 384(1/2/3): 280-292.
[27] KALISA E, NAGATO E G, BIZURU E, et al. Characterization and risk assessment of atmospheric PM 2.5 and PM 10 particulate-bound PAHs and NPAHs in Rwanda, central-east Africa [J]. Environmental Science & Technology, 2018, 52(21): 12179-12187.
[28] HAYAKAWA K, TANG N, AKUTSU K, et al. Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne particulates collected in downtown and suburban Kanazawa, Japan [J]. Atmospheric Environment, 2002, 36(35): 5535-5541. doi: 10.1016/S1352-2310(02)00252-2
[29] RINGUET J, ALBINET A, LEOZ-GARZIANDIA E, et al. Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France) [J]. Science of the Total Environment, 2012, 437: 297-305. doi: 10.1016/j.scitotenv.2012.07.072
[30] HIEN T T, THANH L T, KAMEDA T, et al. Nitro-polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in particulate matter in an urban area of a tropical region: Ho Chi Minh City, Vietnam [J]. Atmospheric Environment, 2007, 41(36): 7715-7725. doi: 10.1016/j.atmosenv.2007.06.020
[31] FEILBERG A, B POULSEN M W, NIELSEN T, et al. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark [J]. Atmospheric Environment, 2001, 35(2): 353-366. doi: 10.1016/S1352-2310(00)00142-4
[32] WEI S L, HUANG B, LIU M, et al. Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China [J]. Atmospheric Research, 2012, 109/110: 76-83. doi: 10.1016/j.atmosres.2012.01.009
[33] DEGRENDELE C, KANDUČ T, KOCMAN D, et al. NPAHs and OPAHs in the atmosphere of two central European Cities: Seasonality, urban-to-background gradients, cancer risks and gas-to-particle partitioning [J]. Science of the Total Environment, 2021, 793: 148528. doi: 10.1016/j.scitotenv.2021.148528
[34] GAO Y, YANG L X, CHEN J M, et al. Nitro and oxy-PAHs bounded in PM2.5 and PM1.0 under different weather conditions at Mount Tai in Eastern China: Sources, long-distance transport, and cancer risk assessment [J]. Science of the Total Environment, 2018, 622/623: 1400-1407. doi: 10.1016/j.scitotenv.2017.11.200
[35] KAWANAKA Y, MATSUMOTO E, WANG N, et al. Contribution of nitrated polycyclic aromatic hydrocarbons to the mutagenicity of ultrafine particles in the roadside atmosphere [J]. Atmospheric Environment, 2008, 42(32): 7423-7428. doi: 10.1016/j.atmosenv.2008.06.032
[36] KITANOVSKI Z, SHAHPOURY P, SAMARA C, et al. Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe - implications for the origin [J]. Atmospheric Chemistry and Physics, 2020, 20(4): 2471-2487. doi: 10.5194/acp-20-2471-2020
[37] RINGUET J, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France) [J]. Atmospheric Chemistry and Physics, 2012, 12(18): 8877-8887. doi: 10.5194/acp-12-8877-2012
[38] ALBINET A, LEOZ-GARZIANDIA E, BUDZINSKI H, et al. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: Particle size distribution [J]. Atmospheric Environment, 2008, 42(1): 55-64. doi: 10.1016/j.atmosenv.2007.10.008
[39] LAMMEL G, KITANOVSKI Z, KUKUČKA P, et al. Oxygenated and nitrated polycyclic aromatic hydrocarbons in ambient air-levels, phase partitioning, mass size distributions, and inhalation bioaccessibility [J]. Environmental Science & Technology, 2020, 54(5): 2615-2625.
[40] DU W, CHEN Y C, SHEN G F, et al. Winter air pollution by and inhalation exposure to nitrated and oxygenated PAHs in rural Shanxi, North China [J]. Atmospheric Environment, 2018, 187: 210-217. doi: 10.1016/j.atmosenv.2018.06.004
[41] ALLEN J O, DOOKERAN N M, SMITH K A, et al. Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts [J]. Environmental Science & Technology, 1996, 30(3): 1023-1031.
[42] VENKATARAMAN C, THOMAS S, KULKARNI P. Size distributions of polycyclic aromatic hydrocarbons—Gas/particle partitioning to urban aerosols [J]. Journal of Aerosol Science, 1999, 30(6): 759-770. doi: 10.1016/S0021-8502(98)00761-7
[43] TIAN M, LIANG B, ZHANG L M, et al. Measurement of size-segregated airborne particulate bound polycyclic aromatic compounds and assessment of their human health impacts - A case study in a megacity of southwest China [J]. Chemosphere, 2021, 284: 131339. doi: 10.1016/j.chemosphere.2021.131339
[44] SHEN G F, CHEN Y C, DU W, et al. Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels [J]. Environmental Pollution, 2016, 216: 935-942. doi: 10.1016/j.envpol.2016.07.002
[45] TOMAZ S, SHAHPOURY P, JAFFREZO J L, et al. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation [J]. Science of the Total Environment, 2016, 565: 1071-1083. doi: 10.1016/j.scitotenv.2016.05.137
[46] WU S P, YANG B Y, WANG X H, et al. Diurnal variation of nitrated polycyclic aromatic hydrocarbons in PM10 at a roadside site in Xiamen, China [J]. Journal of Environmental Sciences, 2012, 24(10): 1767-1776. doi: 10.1016/S1001-0742(11)61018-8
[47] PANKOW J F. Common y-intercept and single compound regressions of gas-particle partitioning data vs 1/T [J]. Atmospheric Environment. Part A. General Topics, 1991, 25(10): 2229-2239. doi: 10.1016/0960-1686(91)90098-R
[48] YAMASAKI H, KUWATA K, MIYAMOTO H. Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 1982, 16(4): 189-194.
[49] LI W, SHEN G F, YUAN C Y, et al. The gas/particle partitioning of nitro- and oxy-polycyclic aromatic hydrocarbons in the atmosphere of Northern China [J]. Atmospheric Research, 2016, 172/173: 66-73. doi: 10.1016/j.atmosres.2015.12.008
[50] GOSS K U, SCHWARZENBACH R P. Gas/solid and gas/liquid partitioning of organic compounds: Critical evaluation of the interpretation of equilibrium constants [J]. Environmental Science & Technology, 1998, 32(14): 2025-2032.
[51] SHEN G F, TAO S, WEI S Y, et al. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China [J]. Environmental Science & Technology, 2012, 46(15): 8123-8130.
[52] LOHMANN R, LAMMEL G. Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling [J]. Environmental Science & Technology, 2004, 38(14): 3793-3803.
[53] SHEN G F, WANG W, YANG Y F, et al. Emissions of PAHs from indoor crop residue burning in a typical rural stove: Emission factors, size distributions, and gas-particle partitioning [J]. Environmental Science & Technology, 2011, 45(4): 1206-1212.
[54] SHEN G F, XUE M, WEI S Y, et al. Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions [J]. Journal of Environmental Sciences, 2013, 25(10): 2072-2080. doi: 10.1016/S1001-0742(12)60249-6
[55] WEI C, HAN Y M, BANDOWE B A M, et al. Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi'an, central China [J]. Science of the Total Environment, 2015, 505: 814-822. doi: 10.1016/j.scitotenv.2014.10.054
[56] PANKOW J F. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere [J]. Atmospheric Environment (1967), 1987, 21(11): 2275-2283. doi: 10.1016/0004-6981(87)90363-5
[57] FINIZIO A, MACKAY D, BIDLEMAN T, et al. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols [J]. Atmospheric Environment, 1997, 31(15): 2289-2296. doi: 10.1016/S1352-2310(97)00013-7
[58] HARNER T, BIDLEMAN T F. Octanol–air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air [J]. Environmental Science & Technology, 1998, 32(10): 1494-1502.
[59] DACHS J, EISENREICH S J. Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 2000, 34(17): 3690-3697.
[60] ABRAHAM M H. Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemical processes [J]. Chemical Society Reviews, 1993, 22(2): 73-83. doi: 10.1039/cs9932200073
[61] LAMMEL G, MULDER M D, SHAHPOURY P, et al. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air [J]. Atmospheric Chemistry and Physics, 2017, 17(10): 6257-6270. doi: 10.5194/acp-17-6257-2017
[62] ZHAO T, YANG L X, HUANG Q, et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs (NPAHs) emitted by gasoline vehicles: Characterization and health risk assessment [J]. Science of the Total Environment, 2020, 727: 138631. doi: 10.1016/j.scitotenv.2020.138631
[63] HAO X W, ZHANG X, CAO X Y, et al. Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China [J]. Science of the Total Environment, 2018, 645: 347-355. doi: 10.1016/j.scitotenv.2018.07.113
[64] CAO X Y, HAO X W, SHEN X B, et al. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements [J]. Atmospheric Environment, 2017, 148: 190-196. doi: 10.1016/j.atmosenv.2016.10.040
[65] YANG X Y, LIU S J, XU Y S, et al. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets [J]. Environmental Pollution, 2017, 231: 1265-1273. doi: 10.1016/j.envpol.2017.08.087
[66] HUANG W, HUANG B, BI X H, et al. Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion [J]. Energy & Fuels, 2014, 28(1): 636-642.
[67] SHEN G F, TAO S, WEI S Y, et al. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China [J]. Environmental Science & Technology, 2013, 47(6): 2998-3005.
[68] LIN Y, QIU X H, MA Y Q, et al. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs [J]. Environmental Pollution, 2015, 196: 164-170. doi: 10.1016/j.envpol.2014.10.005
[69] ZHANG Q Z, GAO R, XU F, et al. Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere: A computational study [J]. Environmental Science & Technology, 2014, 48(9): 5051-5057.
[70] AREY J, ATKINSON R, ZIELINSKA B, et al. Diurnal concentrations of volatile polycyclic aromatic hydrocarbons and nitroarenes during a photochemical air pollution episode in Glendora, California [J]. Environmental Science & Technology, 1989, 23(3): 321-327.
[71] ZHUO S J, DU W, SHEN G F, et al. Estimating relative contributions of primary and secondary sources of ambient nitrated and oxygenated polycyclic aromatic hydrocarbons [J]. Atmospheric Environment, 2017, 159: 126-134. doi: 10.1016/j.atmosenv.2017.04.003
[72] FEILBERG A, NIELSEN T. Photodegradation of nitro-PAHs in viscous organic media used as models of organic aerosols [J]. Environmental Science & Technology, 2001, 35(1): 108-113.
[73] FAN Z, KAMENS R, ZHANG J B, et al. Ozone-nitrogen dioxide-NPAH heterogeneous soot particle reactions and modeling NPAH in the atmosphere [J]. Environmental Science \& Technology, 1996, 30: 2821-2827.
[74] FAN Z H, KAMENS R M, JIANXIN H U, et al. Photostability of nitro-polycyclic aromatic hydrocarbons on combustion soot particles in sunlight [J]. Environmental Science and Technology, 1996, 30(4): 1358-1364. doi: 10.1021/es9505964
[75] BAMFORD H A, BAKER J E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region [J]. Atmospheric Environment, 2003, 37(15): 2077-2091. doi: 10.1016/S1352-2310(03)00102-X
[76] TERRY B. Atmospheric processes: Wet and dry deposition of organic compounds are controlled by their vapor - particle partitioning [J]. Environmental Science and Technology, 1988, 22(4): 361-367. doi: 10.1021/es00169a002
[77] TANG N, SUZUKI G, MORISAKI H, et al. Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010 [J]. Atmospheric Environment, 2017, 152: 354-361. doi: 10.1016/j.atmosenv.2016.12.056
[78] 郑玫, 张延君, 闫才青, 等. 中国PM2.5来源解析方法综述 [J]. 北京大学学报(自然科学版), 2014, 50(6): 1141-1154. ZHENG M, ZHANG Y J, YAN C Q, et al. Review of PM2.5 source apportionment methods in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1141-1154(in Chinese).
[79] LIN Y, QIU X H, MA Y Q, et al. A novel approach for apportionment between primary and secondary sources of airborne nitrated polycyclic aromatic hydrocarbons (NPAHs) [J]. Atmospheric Environment, 2016, 138: 108-113. doi: 10.1016/j.atmosenv.2016.05.017
[80] WADA M, KIDO H, KISHIKAWA N, et al. Assessment of air pollution in Nagasaki City: Determination of polycyclic aromatic hydrocarbons and their nitrated derivatives, and some metals [J]. Environmental Pollution, 2001, 115(1): 139-147. doi: 10.1016/S0269-7491(01)00093-8
[81] ZHAO J B, ZHANG J, SUN L N, et al. Characterization of PM2.5-bound nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air of Langfang during periods with and without traffic restriction [J]. Atmospheric Research, 2018, 213: 302-308. doi: 10.1016/j.atmosres.2018.06.015
[82] WANG W, JING L, ZHAN J, et al. Nitrated polycyclic aromatic hydrocarbon pollution during the Shanghai World Expo 2010 [J]. Atmospheric Environment, 2014, 89: 242-248. doi: 10.1016/j.atmosenv.2014.02.031
[83] TANG N, HATTORI T, TAGA R N, et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries [J]. Atmospheric Environment, 2005, 39(32): 5817-5826. doi: 10.1016/j.atmosenv.2005.06.018
[84] ZHANG J M, YANG L X, LEDOUX F, et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in rural and suburban areas in Shandong and Henan Provinces during the 2016 Chinese New Year's holiday [J]. Environmental Pollution, 2019, 250: 782-791. doi: 10.1016/j.envpol.2019.04.040
[85] MA Y Q, CHENG Y B, QIU X H, et al. A quantitative assessment of source contributions to fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong kong [J]. Environmental Pollution, 2016, 219: 742-749. doi: 10.1016/j.envpol.2016.07.034
[86] WANG J Z, XU H M, GUINOT B, et al. Concentrations, sources and health effects of parent, oxygenated- and nitrated- polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi'an, China [J]. Atmospheric Research, 2017, 192: 1-10. doi: 10.1016/j.atmosres.2017.03.006
[87] YADAV I C, DEVI N L, SINGH V K, et al. Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal [J]. Science of the Total Environment, 2018, 643: 1013-1023. doi: 10.1016/j.scitotenv.2018.06.265
[88] KALISA E, NAGATO E, BIZURU E, et al. Pollution characteristics and risk assessment of ambient PM2.5-bound PAHs and NPAHs in typical Japanese and New Zealand Cities and rural sites [J]. Atmospheric Pollution Research, 2019, 10(5): 1396-1403. doi: 10.1016/j.apr.2019.03.009
[89] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203
[90] LAMY E, KASSIE F, GMINSKI R, et al. 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells [J]. Toxicology Letters, 2004, 146(2): 103-109. doi: 10.1016/j.toxlet.2003.07.001
[91] SCHEEPERS P T, MARTENS M H, VELDERS D D, et al. 1-Nitropyrene as a marker for the mutagenicity of diesel exhaust-derived particulate matter in workplace atmospheres [J]. Environmental and Molecular Mutagenesis, 1995, 25(2): 134-147. doi: 10.1002/em.2850250207
[92] SCHEEPERS P T J, MARTENS M H J, KIMMEL J P F, et al. Determination of inhalation exposure to 1-nitropyrene in workplace atmospheres and urban dwellings [J]. Polycyclic Aromatic Compounds, 1999, 17(1/2/3/4): 267-275.
[93] SCHEEPERS P T J, MICKA V, MUZYKA V, et al. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining [J]. The Annals of Occupational Hygiene, 2003, 47(5): 379-388.