[1] WALLACE L A. Major sources of benzene exposure [J]. Environmental Health Perspectives, 1989, 82: 165-169. doi: 10.1289/ehp.8982165
[2] OZKAYNAK H, RYAN P B, WALLACE L A, et al. Sources and emission rates of organic chemical vapors in homes and buildings//SEIFERT B, ESDORN H, FISCHER M, et al. Indoor Air ’87: Proceedings of the 4th International Conference on Indoor Air Quality and Climate, Institute for Water, Soil and Air Hygiene [C]. West Berlin, 1987, 1: 3–7.
[3] GRIGORYAN H, EDMANDS W M B, LAN Q, et al. Adductomic signatures of benzene exposure provide insights into cancer induction [J]. Carcinogenesis, 2018, 39(5): 661-668. doi: 10.1093/carcin/bgy042
[4] MCCONNELL E E. Benzene. Environmental Health Criteria Series no. 150. International Program on Chemical Safety (IPCS) [M]. Geneva: World Health Organization, 1993: 14 and 42–45.
[5] ROTHMAN N, LI G L, DOSEMECI M, et al. Hematotoxicity among Chinese workers heavily exposed to benzene [J]. American Journal of Industrial Medicine, 1996, 29(3): 236-246. doi: 10.1002/(SICI)1097-0274(199603)29:3<236::AID-AJIM3>3.0.CO;2-O
[6] YIN S N, HAYES R B, LINET M S, et al. A cohort study of cancer among benzene-exposed workers in China: Overall results [J]. American Journal of Industrial Medicine, 1996, 29(3): 227-235. doi: 10.1002/(SICI)1097-0274(199603)29:3<227::AID-AJIM2>3.0.CO;2-N
[7] RAAMSDONK L M, TEUSINK B, BROADHURST D, et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations [J]. Nature Biotechnology, 2001, 19(1): 45-50. doi: 10.1038/83496
[8] HALL R D, BROUWER I D, FITZGERALD M A. Plant metabolomics and its potential application for human nutrition [J]. Physiologia Plantarum, 2008, 132(2): 162-175.
[9] WISHART D S. Applications of metabolomics in drug discovery and development [J]. Drugs in R & D, 2008, 9(5): 307-322.
[10] KADDURAH-DAOUK R, KRISHNAN K R R. Metabolomics: A global biochemical approach to the study of central nervous system diseases [J]. Neuropsychopharmacology, 2009, 34(1): 173-186. doi: 10.1038/npp.2008.174
[11] 俞颖, 曹毅, 陈益民, 等. 基于液相色谱-质谱联用系统的系统性红斑狼疮患者血浆代谢组学分析 [J]. 色谱, 2010, 28(7): 644-648. doi: 10.3724/SP.J.1123.2010.00644 YU Y, CAO Y, CHEN Y M, et al. Plasma metabonomics study of systemic lupus erythematosus based on liquid chromatography-mass spectrometry [J]. Chinese Journal of Chromatography, 2010, 28(7): 644-648(in Chinese). doi: 10.3724/SP.J.1123.2010.00644
[12] 谷金宁, 牛俊, 皮子凤, 等. 尿液代谢组学方法研究人参总皂苷治疗糖尿病心肌病大鼠作用机制 [J]. 分析化学, 2013, 41(3): 371-376. GU J N, NIU J, PI Z F, et al. A urinary metabonomics research on total ginsenoside treated diabetes cardiomyopathy rats based on rapid resolution liquid chromatography/mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013, 41(3): 371-376(in Chinese).
[13] 周红光, 陈海彬, 王瑞平, 等. 代谢组学在中药复方研究中的应用 [J]. 中国药理学通报, 2013, 29(2): 161-165. ZHOU H G, CHEN H B, WANG R P, et al. Metabonomics and its application in TCM formula study [J]. Chinese Pharmacological Bulletin, 2013, 29(2): 161-165(in Chinese).
[14] 张凤霞, 王国栋. 植物代谢组学应用研究: 现状与展望 [J]. 中国农业科技导报, 2013, 15(2): 28-32. ZHANG F X, WANG G D. The applications of metabolomics in plant biology—Current status and prospective [J]. Journal of Agricultural Science and Technology, 2013, 15(2): 28-32(in Chinese).
[15] 王伟华, 韩占江. 新疆慕萨莱思酒天然活性成分的代谢组学研究进展: 以原花青素为例 [J]. 食品安全质量检测学报, 2013, 4(6): 1810-1814. WANG W H, HAN Z J. Research progress on metabonomics method of natural active ingredients in Musalais wine in Xinjiang—Taking procyanidins for example [J]. Journal of Food Safety & Quality, 2013, 4(6): 1810-1814(in Chinese).
[16] 史怀, 刘波, 陈峥, 等. 基于LC/Q-TOF MS的芽胞杆菌代谢组学分析方法 [J]. 福建农业学报, 2012, 27(10): 1112-1119. SHI H, LIU B, CHEN Z, et al. Metabonomics analysis of Bacillus based on LC/Q-TOF MS [J]. Fujian Journal of Agricultural Sciences, 2012, 27(10): 1112-1119(in Chinese).
[17] SUN R L, ZHANG J, YIN L H, et al. Investigation into variation of endogenous metabolites in bone marrow cells and plasma in C3H/He mice exposed to benzene [J]. International Journal of Molecular Sciences, 2014, 15(3): 4994-5010. doi: 10.3390/ijms15034994
[18] SUN R L, XU K, ZHANG Q Y, et al. Plasma metabonomics investigation reveals involvement of fatty acid oxidation in hematotoxicity in Chinese benzene-exposed workers with low white blood cell count [J]. Environmental Science and Pollution Research, 2018, 25(32): 32506-32514. doi: 10.1007/s11356-018-3160-2
[19] CAMPO P, WANIUSIOW D, COSSEC B, et al. Toluene-induced hearing loss in phenobarbital treated rats [J]. Neurotoxicology and Teratology, 2008, 30(1): 46-54. doi: 10.1016/j.ntt.2007.10.001
[20] KIMURA T, HAMASE K, MIYOSHI Y, et al. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease [J]. Scientific Reports, 2016, 6: 26137. doi: 10.1038/srep26137
[21] WAGNER A J, ZUBAREV D Y, ASPURU-GUZIK A, et al. Chiral sugars drive enantioenrichment in prebiotic amino acid synthesis [J]. ACS Central Science, 2017, 3(4): 322-328. doi: 10.1021/acscentsci.7b00085
[22] KNIGHT B J, STACHE E E, FERREIRA E M. An analysis of the complementary stereoselective alkylations of imidazolidinone derivatives toward α-quaternary proline-based amino amides [J]. Tetrahedron, 2015, 71(35): 5814-5823. doi: 10.1016/j.tet.2015.05.010
[23] CAMACHO-MUÑOZ D, KASPRZYK-HORDERN B. Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection [J]. Analytical and Bioanalytical Chemistry, 2015, 407(30): 9085-9104. doi: 10.1007/s00216-015-9075-6
[24] WANG X Y, LI Z, ZHANG H, et al. Environmental behavior of the chiral organophosphorus insecticide acephate and its chiral metabolite methamidophos: Enantioselective transformation and degradation in soils [J]. Environmental Science & Technology, 2013, 47(16): 9233-9240.
[25] BARCLAY V K H, TYREFORS N L, JOHANSSON I M, et al. Trace analysis of fluoxetine and its metabolite norfluoxetine. Part I: Development of a chiral liquid chromatography-tandem mass spectrometry method for wastewater samples [J]. Journal of Chromatography, A, 2011, 1218(33): 5587-5596. doi: 10.1016/j.chroma.2011.06.024
[26] ZHANG P, ZHU W T, WANG D Z, et al. Enantioselective effects of metalaxyl enantiomers on breast cancer cells metabolic profiling using HPLC-QTOF-based metabolomics [J]. International Journal of Molecular Sciences, 2017, 18(1): 142. doi: 10.3390/ijms18010142
[27] TAKAYAMA T, MOCHIZUKI T, TODOROKI K, et al. A novel approach for LC-MS/MS-based chiral metabolomics fingerprinting and chiral metabolomics extraction using a pair of enantiomers of chiral derivatization reagents [J]. Analytica Chimica Acta, 2015, 898: 73-84. doi: 10.1016/j.aca.2015.10.010
[28] CHENG Q Y, XIONG J, HUANG W, et al. Sensitive determination of onco-metabolites of D- and L-2-hydroxyglutarate enantiomers by chiral derivatization combined with liquid chromatography/mass spectrometry analysis [J]. Scientific Reports, 2015, 5: 15217. doi: 10.1038/srep15217
[29] CHAI T T, CUI F, YIN Z Q, et al. Chiral PCB 91 and 149 toxicity testing in embryo and larvae (Danio rerio): Application of targeted metabolomics via UPLC-MS/MS [J]. Scientific Reports, 2016, 6: 33481. doi: 10.1038/srep33481
[30] HASAN M, HOFSTETTER R, FASSAUER G M, et al. Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 139: 87-97. doi: 10.1016/j.jpba.2017.02.035
[31] MASTERS A R, GUFFORD B T, LU J B L, et al. Chiral plasma pharmacokinetics and urinary excretion of bupropion and metabolites in healthy volunteers [J]. The Journal of Pharmacology and Experimental Therapeutics, 2016, 358(2): 230-238. doi: 10.1124/jpet.116.232876
[32] TEITELBAUM A M, FLAKER A M, KHARASCH E D. Development, validation and application of a comprehensive stereoselective LC/MS-MS assay for bupropion and oxidative, reductive, and glucuronide metabolites in human urine [J]. Journal of Chromatography, B, Analytical Technologies in the Biomedical and Life Sciences, 2016, 1027: 239-253. doi: 10.1016/j.jchromb.2016.05.036
[33] NAGAO R, TSUTSUI H, MOCHIZUKI T, et al. Novel chiral derivatization reagents possessing a pyridylthiourea structure for enantiospecific determination of amines and carboxylic acids in high-throughput liquid chromatography and electrospray-ionization mass spectrometry for chiral metabolomics identification [J]. Journal of Chromatography A, 2013, 1296: 111-118. doi: 10.1016/j.chroma.2013.03.019
[34] LI L, CHENG B P, ZHOU R D, et al. Preparation and evaluation of a novel N-benzyl-phenethylamino-β-cyclodextrin-bonded chiral stationary phase for HPLC [J]. Talanta, 2017, 174: 179-191. doi: 10.1016/j.talanta.2017.06.009
[35] LI L, WANG H, JIN Y J, et al. Preparation of a new benzylureido-β-cyclodextrin-based column and its application for the determination of phenylmercapturic acid and benzylmercapturic acid enantiomers in human urine by LC/MS/MS [J]. Analytical and Bioanalytical Chemistry, 2019, 411(21): 5465-5479. doi: 10.1007/s00216-019-01920-0
[36] 聂桂珍, 李来生, 程彪平, 等. 乙二胺β-环糊精键合SBA-15电色谱拆分β-受体阻滞剂的研究 [J]. 分析试验室, 2014, 33(7): 745-751. NIE G Z, LI L S, CHENG B P, et al. Study on mono-ethylenediamino-β-cyclodextrin-bonded SBA-15 capillary electrochromatography for enantioseparations of β-blockers [J]. Chinese Journal of Analysis Laboratory, 2014, 33(7): 745-751(in Chinese).
[37] PIERI M, MIRAGLIA N, ACAMPORA A, et al. Determination of urinary S-phenylmercapturic acid by liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography B, 2003, 795(2): 347-354. doi: 10.1016/S1570-0232(03)00602-0
[38] FAN R F, WANG D L, SHE J W. Method development for the simultaneous analysis of trans, trans-muconic acid, 1, 2-dihydroxybenzene, S-phenylmercapturic acid and S-benzylmercapturic acid in human urine by liquid chromatography/tandem mass spectrometry [J]. Analytical Methods, 2015, 7(2): 573-580. doi: 10.1039/C4AY02261K
[39] MAESTRI L, NEGRI S, FERRARI M, et al. Determination of urinary S-phenylmercapturic acid, a specific metabolite of benzene, by liquid chromatography/single quadrupole mass spectrometry [J]. Rapid Communications in Mass Spectrometry:RCM, 2005, 19(9): 1139-1144. doi: 10.1002/rcm.1904
[40] SHI J W. Assessment of matrix effect in LC-MS/MS quantitative analysis with external standard method [J]. Physical Testing and Chemical Analysis, 2012, 48(11): 1261-1264.
[41] KUO M L, SHIAH S G, WANG C J, et al. Suppression of apoptosis by Bcl-2 to enhance benzene metabolites-induced oxidative DNA damage and mutagenesis: A possible mechanism of carcinogenesis [J]. Molecular Pharmacology, 1999, 55(5): 894-901.
[42] DOROSHYENKO O, FUHR U, KUNZ D, et al. In vivo role of cytochrome P450 2E1 and glutathione-S-transferase activity for acrylamide toxicokinetics in humans [J]. Cancer Epidemiology, Biomarkers & Prevention, 2009, 18(2): 433-443.
[43] van SITTERT N J, MEGENS H J J J, WATSON W P, et al. Biomarkers of exposure to 1, 3-butadiene as a basis for cancer risk assessment [J]. Toxicological Sciences, 2000, 56(1): 189-202. doi: 10.1093/toxsci/56.1.189
[44] 刘楠, 程娟, 李斌, 等. 1, 3-丁二烯生物标志物的研究进展[J]. 国外医学(卫生学分册), 2007(6): 352-357. LIU N, CHENG J, LI B, et al. Research progress of biomarkers of 1, 3- butadiene[J]. Foreign Medical Sciences (Section Hygiene), 2007(6): 352-357 (in Chinese).
[45] BOOGAARD P, van SITTERT N J, MEGENS H. Urinary metabolites and haemoglobin adducts as biomarkers of exposure to 1, 3-butadiene: A basis for 1, 3-butadiene cancer risk assessment[J]. Chemico-Biological Interactions, 2001, 135: 695-701.
[46] 杨臻峥. 科学家发现人体代谢产物2-羟基戊二酸致癌机制 [J]. 药学进展, 2011, 35(1): 35. YANG Z Z. Scientists discover the carcinogenic mechanism of human metabolite 2- hydroxyglutaric acid [J]. Progress in Pharmaceutical Sciences, 2011, 35(1): 35(in Chinese).
[47] SCHETTGEN T, MUSIOL A, KRAUS T. Fast determination of urinary S-phenylmercapturic acid (S-PMA) and S-benzylmercapturic acid (S-BMA) by column-switching liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography, B, 2008, 863(2): 283-292. doi: 10.1016/j.jchromb.2008.01.024
[48] ZHANG H Y, WANG X, WANG M Y, et al. Mammalian cells exhibit a range of sensitivities to silver nanoparticles that are partially explicable by variations in antioxidant defense and metallothionein expression [J]. Small (Weinheim an Der Bergstrasse, Germany), 2015, 11(31): 3797-3805. doi: 10.1002/smll.201500251
[49] JEE S H, KIM M, KIM M, et al. Clinical relevance of glycerophospholipid, sphingomyelin and glutathione metabolism in the pathogenesis of pharyngolaryngeal cancer in smokers: The Korean Cancer Prevention Study-II [J]. Metabolomics, 2016, 12(11): 164. doi: 10.1007/s11306-016-1114-6