[1] MADHAV S, AHAMAD A, SINGH A K, et al. Water pollutants: sources and impact on the environment and human health [M]. Berlin, Germany: Springer, 2020: 43-62.
[2] CUI X, ZHU L, WU J, et al. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection [J]. Biosensors & Bioelectronics, 2015, 63: 506-512.
[3] HIDAKA M, GOTOH A, SHIMIZU T, et al. Visualization of NO3-/NO2- dynamics in living cells by fluorescence resonance energy transfer ( FRET) imaging employing a rhizobial two-component regulatory system [J]. Journal of Biological Chemistry, 2016, 291(5): 2260-2269. doi: 10.1074/jbc.M115.687632
[4] LONG Q, LI H, ZHANG Y, et al. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides [J]. Biosensors & Bioelectronics, 2015, 68: 168-174.
[5] GOLDMAN E R, MEDINTZ I L, WHITLEY J L, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J]. Journal of the American Chemical Society, 2005, 127(18): 6744-6751. doi: 10.1021/ja043677l
[6] ZHAO X, WANG Y, LI J, et al. A fluorescence aptasensor based on controlled zirconium-based MOFs for the highly sensitive detection of T-2 toxin [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2021, 259: 119893. doi: 10.1016/j.saa.2021.119893
[7] HONG J, WANG W, WANG J, et al. A turn-on-type fluorescence resonance energy transfer aptasensor for vibrio detection using aptamer-modified polyhedral oligomeric silsesquioxane-perovskite quantum dots/Ti3C2 MXenes composite probes [J]. Microchimica Acta, 2021, 188(2): 45. doi: 10.1007/s00604-020-04679-9
[8] ZHANG Y, ZHU Y, ZENG Z, et al. Sensors for the environmental pollutant detection: Are we already there? [J]. Coordination Chemistry Reviews, 2021, 431: 213681. doi: 10.1016/j.ccr.2020.213681
[9] PERUMAL V, HASHIM U. Advances in biosensors: principle, architecture and applications [J]. Journal of Applied Biomedicine, 2014, 12(1): 1-15. doi: 10.1016/j.jab.2013.02.001
[10] MUñOZ-LOSA A, CURUTCHET C, KRUEGER B P, et al. Fretting about FRET: failure of the ideal dipole approximation [J]. Biophysical Journal, 2009, 96(12): 4779-4788. doi: 10.1016/j.bpj.2009.03.052
[11] HILDEBRANDT N. How to apply FRET: from experimental design to data analysis [M]. New Jersey, USA: Wiley Online Library, 2013: 105-163.
[12] WARD W W, CORMIER M J. Energy-transfer via protein-protein interaction in renilla bioluminescence [J]. Photochemistry and Photobiology, 1978, 27(4): 389-396. doi: 10.1111/j.1751-1097.1978.tb07621.x
[13] DALE N C, JOHNSTONE E K M, WHITE C W, et al. NanoBRET: the bright future of proximity-based assays [J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 56. doi: 10.3389/fbioe.2019.00056
[14] HUANG X, LI L, QIAN H, et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET) [J]. Angewandte Chemie International Edition, 2006, 45(31): 5140-5143. doi: 10.1002/anie.200601196
[15] SOLEJA N, JAIRAJPURI M A, QUEEN A, et al. Genetically encoded FRET-based optical sensor for Hg2+ detection and intracellular imaging in living cells [J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(12): 1669-1683. doi: 10.1007/s10295-019-02235-w
[16] ZHAO Y, CHEN D, YANG J, et al. Visual and fast detection of trace copper ions using biosensor based on FRET [J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 217: 101-106. doi: 10.1016/j.saa.2019.03.082
[17] ADAMS J P, ADELI A, HSU C-Y, et al. Plant-based FRET biosensor discriminates environmental zinc levels [J]. Plant Biotechnology Journal, 2012, 10(2): 207-216. doi: 10.1111/j.1467-7652.2011.00656.x
[18] ZHENG J, WAI J L, LAKE R J, et al. DNAzyme sensor uses chemiluminescence resonance energy transfer for rapid, portable, and ratiometric detection of metal ions [J]. Analytical Chemistry, 2021, 93(31): 10834-10840. doi: 10.1021/acs.analchem.1c01077
[19] JIN H, LIU R, BAI T, et al. A low-noise ratiometric fluorescence biosensor for detection of Pb2+ based on DNAzyme and exonuclease III-assisted cascade signal amplification [J]. Analytical and Bioanalytical Chemistry, 2022, 414: 1899-1907. doi: 10.1007/s00216-021-03825-3
[20] ONO A, TOGASHI H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions [J]. Angewandte Chemie-International Edition, 2004, 43(33): 4300-4302. doi: 10.1002/anie.200454172
[21] CHU-MONG K, THAMMAKHET C, THAVARUNGKUL P, et al. A FRET based aptasensor coupled with non-enzymatic signal amplification for mercury (II) ion detection [J]. Talanta, 2016, 155: 305-313. doi: 10.1016/j.talanta.2016.05.016
[22] XIONG Y M, ZHOU L H, PENG X X, et al. A specific short peptide-assisted enhanced chemiluminescence resonance energy transfer (CRET) for label-free and ratiometric detection of copper ions in complex samples [J]. Sensors and Actuators B-Chemical, 2020, 320: 128411. doi: 10.1016/j.snb.2020.128411
[23] HUANG W H, MAI V P, WU R Y, et al. A microfluidic aptamer-based sensor for detection of mercury(II) and lead(II) ions in water [J]. Micromachines, 2021, 12(11): 1283. doi: 10.3390/mi12111283
[24] XIA J, LIN M, ZUO X, et al. Metal ion-mediated assembly of DNA nanostructures for cascade fluorescence resonance energy transfer-based fingerprint analysis [J]. Analytical Chemistry, 2014, 86(14): 7084-7087. doi: 10.1021/ac5015436
[25] SUMNER J P, WESTERBERG N M, STODDARD A K, et al. Cu+- and Cu2+-sensitive PEBBLE fluorescent nanosensors using DsRed as the recognition element [J]. Sensors and Actuators B-Chemical, 2006, 113(2): 760-767. doi: 10.1016/j.snb.2005.07.028
[26] MONSIN M, DIWAN H, KHAN I, et al. Genetically encoded FRET-based nanosensor for in vivo monitoring of zinc concentration in physiological environment of living cell [J]. Biochemical Engineering Journal, 2015, 102: 62-68. doi: 10.1016/j.bej.2015.03.012
[27] APER S J, DIERICKX P, MERKX M. Dual readout BRET/FRET sensors for measuring intracellular zinc [J]. ACS Chemical Biology, 2016, 11(10): 2854-2864. doi: 10.1021/acschembio.6b00453
[28] SAITO K, HATSUGAI N, HORIKAWA K, et al. Auto-luminescent genetically-encoded ratiometric indicator for real-time Ca2+ imaging at the single cell level [J]. PLoS ONE, 2010, 5(4): e9935. doi: 10.1371/journal.pone.0009935
[29] YANG D-M, MANURUNG R V, LIN Y-S, et al. Monitoring the heavy metal lead inside living drosophila with a FRET-based biosensor [J]. Sensors, 2020, 20(6): 1712. doi: 10.3390/s20061712
[30] SOLEJA N, MANZOOR O, KHAN P, et al. Engineering genetically encoded FRET-based nanosensors for real time display of arsenic (As3+) dynamics in living cells [J]. Scientific Reports, 2019, 9: 14. doi: 10.1038/s41598-018-36846-7
[31] HOANG M, HUANG P J J, LIU J W. G-Quadruplex DNA for Fluorescent and Colorimetric Detection of Thallium(I) [J]. Acs Sensors, 2016, 1(2): 137-143. doi: 10.1021/acssensors.5b00147
[32] SOLEJA N, IRFAN, MOHSIN M. Ratiometric imaging of flux dynamics of cobalt with an optical sensor [J]. Journal of Photochemistry and Photobiology a-Chemistry, 2020, 400: 112699. doi: 10.1016/j.jphotochem.2020.112699
[33] SOLEJA N, MOHSIN M. Real time quantification of intracellular nickel using genetically encoded FRET-based nanosensor [J]. International Journal of Biological Macromolecules, 2019, 138: 648-657. doi: 10.1016/j.ijbiomac.2019.07.115
[34] AGRAWAL N, SOLEJA N, BANO R, et al. FRET-Based genetically encoded sensor to monitor silver ions [J]. Acs Omega, 2021, 6(22): 14164-14173. doi: 10.1021/acsomega.1c00741
[35] CAI S, ZHOU Y, YE J W, et al. A chemiluminescence resonance energy transfer strategy and its application for detection of platinum ions and cisplatin [J]. Microchimica Acta, 2019, 186(7): 463. doi: 10.1007/s00604-019-3509-3
[36] GU H, LALONDE S, OKUMOTO S, et al. A novel analytical method for in vivo phosphate tracking [J]. FEBS Letters, 2006, 580(25): 5885-5893. doi: 10.1016/j.febslet.2006.09.048
[37] FATIMA U, AMEEN F, SOLEJA N, et al. A fluorescence resonance energy transfer-based analytical tool for nitrate quantification in living cells [J]. Acs Omega, 2020, 5(46): 30306-30314. doi: 10.1021/acsomega.0c04868
[38] FATIMA U, OKLA M K, MOHSIN M, et al. A non-Invasive tool for real-time measurement of sulfate in living cells [J]. International Journal of Molecular Sciences, 2020, 21(7): 2572. doi: 10.3390/ijms21072572
[39] NAKANISHI Y, IIDA S, UEOKA-NAKANISHI H, et al. Exploring dynamics of molybdate in living animal cells by a genetically encoded FRET nanosensor [J]. PLoS ONE, 2013, 8(3): e58175. doi: 10.1371/journal.pone.0058175
[40] ZHANG Z, ZHANG M, WU X Y, et al. Upconversion fluorescence resonance energy transfer-a novel approach for sensitive detection of fluoroquinolones in water samples [J]. Microchemical Journal, 2016, 124: 181-187. doi: 10.1016/j.microc.2015.08.024
[41] YU X, WEN K, WANG Z, et al. General bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots [J]. Analytical Chemistry, 2016, 88(7): 3512-3520. doi: 10.1021/acs.analchem.5b03581
[42] LIU S, BAI J, HUO Y, et al. A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol [J]. Biosensors & Bioelectronics, 2020, 149: 111801.
[43] MAJDINASAB M, DANESHI M, LOUIS MARTY J. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer [J]. Talanta, 2021, 232: 122397. doi: 10.1016/j.talanta.2021.122397
[44] ARVAND M, MIRROSHANDEL A A. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between L-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide [J]. Biosensors & Bioelectronics, 2017, 96: 324-331.
[45] ZHANG Y Q, XU Z L, WANG F, et al. Isolation of bactrian camel single domain antibody for parathion and development of one-step dc-FEIA method using VHH-alkaline phosphatase fusion protein [J]. Analytical Chemistry, 2018, 90(21): 12886-12892. doi: 10.1021/acs.analchem.8b03509
[46] LI Y J, WANG J Y, TIAN Y H, et al. The development of a wash-free homogeneous immunoassay method for the detection of tetracycline in environmental samples [J]. Analyst, 2021, 146(15): 4918-4926. doi: 10.1039/D1AN00929J
[47] WANG Y, YAN X, KOU Q, et al. An ultrasensitive label-free fluorescent aptasensor platform for detection of sulfamethazine [J]. International Journal of Nanomedicine, 2021, 16: 2751-2759. doi: 10.2147/IJN.S307080
[48] RONG Y, LI H, OUYANG Q, et al. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 239: 118500. doi: 10.1016/j.saa.2020.118500
[49] MEDLOCK KAKALEY E K, EYTCHESON S A, LEBLANC G A. Ligand-mediated receptor assembly as an end point for high-throughput chemical toxicity screening [J]. Environmental Science & Technology, 2017, 51(16): 9327-9333.
[50] KIM H M, SEO H, PARK Y, et al. Development of a human estrogen receptor dimerization assay for the estrogenic endocrine-disrupting chemicals using bioluminescence resonance energy transfer [J]. International Journal of Environmental Research and Public Health, 2021, 18(16): 8875. doi: 10.3390/ijerph18168875
[51] GUO L M, HU Y, ZHANG Z Q, et al. Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide [J]. Analytical and Bioanalytical Chemistry, 2018, 410(1): 287-295. doi: 10.1007/s00216-017-0720-0
[52] HU L-Y, NIU C-G, WANG X-Y, et al. Magnetic separate "turn-on" fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene [J]. Talanta, 2017, 168: 196-202. doi: 10.1016/j.talanta.2017.03.055
[53] ZHU Y, CAI Y, XU L, et al. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol a [J]. ACS Applied Materials and Interfaces, 2015, 7(14): 7492-7496. doi: 10.1021/acsami.5b00199
[54] WANG B J, LIAO Y F, TUNG Y T, et al. Establishment of a bioluminescence-based bioassay for the detection of dioxin-like compounds [J]. Toxicol Mech Methods, 2013, 23(4): 247-254. doi: 10.3109/15376516.2012.745105
[55] CAPO A, PENNACCHIO A, VARRIALE A, et al. The porcine odorant-binding protein as molecular probe for benzene detection [J]. PLoS ONE, 2018, 13(9): e0202630. doi: 10.1371/journal.pone.0202630
[56] BU D, ZHUANG H S, YANG G X, et al. An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles [J]. Sensors and Actuators B-Chemical, 2014, 195: 540-548. doi: 10.1016/j.snb.2014.01.079
[57] LI T, CHOI Y H, SHIN Y-B, et al. A fluorescence enhancement-based label-free homogeneous immunoassay of benzo a pyrene (BaP) in aqueous solutions [J]. Chemosphere, 2016, 150: 407-413. doi: 10.1016/j.chemosphere.2016.01.008
[58] THAVARAJAH W, VEROSLOFF M S, JUNG J K, et al. A primer on emerging field-deployable synthetic biology tools for global water quality monitoring [J]. npj Clean Water, 2020, 3(1): 18. doi: 10.1038/s41545-020-0064-8
[59] SHI Y, WU J, SUN Y, et al. A graphene oxide based biosensor for microcystins detection by fluorescence resonance energy transfer [J]. Biosensors & Bioelectronics, 2012, 38(1): 31-36.
[60] AKTER S, LAMMINMAKI U. A 15-min non-competitive homogeneous assay for microcystin and nodularin based on time-resolved Forster resonance energy transfer (TR-FRET) [J]. Analytical and Bioanalytical Chemistry, 2021, 413(24): 6159-6170. doi: 10.1007/s00216-021-03375-8
[61] LEE E-H, SON A. Fluorescence resonance energy transfer based quantum dot-Aptasensor for the selective detection of microcystin-LR in eutrophic water [J]. Chemical Engineering Journal, 2019, 359: 1493-1501. doi: 10.1016/j.cej.2018.11.027
[62] WU S, DUAN N, ZHANG H, et al. Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor [J]. Analytical and Bioanalytical Chemistry, 2015, 407(5): 1303-1312. doi: 10.1007/s00216-014-8378-3
[63] SU B, ZHANG Z, SUN Z, et al. Fluonanobody-based nanosensor via fluorescence resonance energy transfer for ultrasensitive detection of ochratoxin A [J]. Journal of Hazardous Materials, 2022, 422: 126838. doi: 10.1016/j.jhazmat.2021.126838
[64] GU H, HAO L, YE H, et al. Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins [J]. Microchimica Acta, 2021, 188(4): 118. doi: 10.1007/s00604-020-04684-y
[65] SHI J, GUO J, BAI G, et al. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity [J]. Biosensors & Bioelectronics, 2015, 65: 238-244.
[66] SABET F S, HOSSEINI M, KHABBAZ H, et al. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice [J]. Food Chemistry, 2017, 220: 527-532. doi: 10.1016/j.foodchem.2016.10.004
[67] KUMARI S, TIWARI M, DAS P. Multi format compatible visual and fluorometric detection of SEB toxin in nanogram range by carbon dot-DNA and acriflavine nano-assembly [J]. Sensors and Actuators B-Chemical, 2019, 279: 393-399. doi: 10.1016/j.snb.2018.09.110
[68] JIN B, WANG S, LIN M, et al. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection [J]. Biosensors & Bioelectronics, 2017, 90: 525-533.
[69] HAO L, GU H, DUAN N, et al. An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection [J]. Analytica Chimica Acta, 2017, 959: 83-90. doi: 10.1016/j.aca.2016.12.045
[70] SAFARPOUR H, SAFARNEJAD M R, TABATABAEI M, et al. Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae [J]. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 2012, 34(4): 507-515. doi: 10.1080/07060661.2012.709885
[71] KIM B, CHUNG K W, LEE J H. Non-stop aptasensor capable of rapidly monitoring norovirus in a sample [J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 152: 315-321. doi: 10.1016/j.jpba.2018.02.022
[72] HALL M P, UNCH J, BINKOWSKI B F, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate [J]. ACS Chemical Biology, 2012, 7(11): 1848-1857. doi: 10.1021/cb3002478
[73] OHMURO-MATSUYAMA Y, FURUTA T, MATSUI H, et al. Miniaturization of Bright Light-Emitting Luciferase ALuc: picALuc [J]. ACS Chemical Biology, 2022, 17(4): 864-872. doi: 10.1021/acschembio.1c00897
[74] LAKOWICZ J R. Instrumentation for fluorescence spectroscopy [M]. Boston, USA: Springer, 2006: 27-61.
[75] SWAINSON N M, AIEMDERM P, SAIKAEW C, et al. Biosensors for the detection of organophosphate exposure by a new diethyl thiophosphate-specific aptamer [J]. Biotechnology Letters, 2021, 43(9): 1869-1881. doi: 10.1007/s10529-021-03158-2
[76] JIN H E, ZUEGER C, CHUNG W J, et al. Selective and sensitive sensing of flame retardant chemicals through phage display discovered recognition peptide [J]. Nano Letters, 2015, 15(11): 7697-7703. doi: 10.1021/acs.nanolett.5b03678
[77] CHEN X, YAO H, SONG D, et al. Extracellular chemoreceptor of deca-brominated diphenyl ether and its engineering in the hydrophobic chassis cell for organics biosensing [J]. Chemical Engineering Journal, 2022, 433: 133266. doi: 10.1016/j.cej.2021.133266
[78] SHARIFI S, BEHZADI S, LAURENT S, et al. Toxicity of nanomaterials [J]. Chemical Society Reviews, 2012, 41(6): 2323-2343. doi: 10.1039/C1CS15188F