[1] WANG Z H, FU Y, WANG L L. Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999-2020) [J]. Journal of Hazardous Materials, 2021, 414: 125488. doi: 10.1016/j.jhazmat.2021.125488
[2] 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5): 10-11. Bulletin on the investigation of soil pollution in China[J]. China Environmental Protection Industry, 2014(5): 10-11 (in Chinese).
[3] XU X W, CHEN C, WANG P, et al. Control of arsenic mobilization in paddy soils by manganese and iron oxides [J]. Environmental Pollution, 2017, 231: 37-47. doi: 10.1016/j.envpol.2017.07.084
[4] YAMAGUCHI N, NAKAMURA T, DONG D, et al. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution [J]. Chemosphere, 2011, 83(7): 925-932. doi: 10.1016/j.chemosphere.2011.02.044
[5] 曹丽霞, 李文栓, 蔺昕, 等. 叶面施硒对水稻砷吸收积累影响的研究进展[J]. 环境工程, 2023, 41(7): 271-276. CAO L X, LI W S, LIN X, et al.Effects of selenium application on arsenic uptake and accumulation in rice [J]. Environmental Engineering, 2023, 41(7): 271-276(in Chinese).
[6] 刘文菊, 赵方杰. 植物砷吸收与代谢的研究进展 [J]. 环境化学, 2011, 30(1): 56-62. LIU W J, ZHAO F J. A brief review of arsenic uptake and metabolism in plants [J]. Environmental Chemistry, 2011, 30(1): 56-62(in Chinese).
[7] 李刚, 郑茂钟, 朱永官. 福建省稻米中的砷水平及其健康风险研究 [J]. 生态毒理学报, 2013, 8(2): 148-155. doi: 10.7524/AJE.1673-5897.20130103001 LI G, ZHENG M Z, ZHU Y G. Studies on arsenic levels and its health risk of rice collected from Fujian Province [J]. Asian Journal of Ecotoxicology, 2013, 8(2): 148-155(in Chinese). doi: 10.7524/AJE.1673-5897.20130103001
[8] LI Z L, TANG Z, SONG Z P, et al. Variations and controlling factors of soil denitrification rate [J]. Global Change Biology, 2022, 28(6): 2133-2145. doi: 10.1111/gcb.16066
[9] 杜连凤, 赵同科, 张成军, 等. 京郊地区3种典型农田系统硝酸盐污染现状调查 [J]. 中国农业科学, 2009, 42(8): 2837-2843. doi: 10.3864/j.issn.0578-1752.2009.08.024 DU L F, ZHAO T K, ZHANG C J, et al. Investigation on nitrate pollution in soils, ground water and vegetables of three typical farmlands in Beijing region [J]. Scientia Agricultura Sinica, 2009, 42(8): 2837-2843(in Chinese). doi: 10.3864/j.issn.0578-1752.2009.08.024
[10] 苏永中, 杨晓, 杨荣. 黑河中游边缘荒漠-绿洲非饱和带土壤质地对土壤氮积累与地下水氮污染的影响 [J]. 环境科学, 2014, 35(10): 3683-3691. doi: 10.13227/j.hjkx.2014.10.007 SU Y Z, YANG X, YANG R. Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River Basin [J]. Environmental Science, 2014, 35(10): 3683-3691(in Chinese). doi: 10.13227/j.hjkx.2014.10.007
[11] 赵姣姣, 刘文科, 刘义飞. 河北省安国市药材田与粮作田土壤硝酸盐的累积特征 [J]. 中国农业气象, 2013, 34(3): 301-305. doi: 10.3969/j.issn.1000-6362.2013.03.008 ZHAO J J, LIU W K, LIU Y F. Characteristic of soil nitrate accumulation on herbal field and grain field in Anguo city, Hebei Province [J]. Chinese Journal of Agrometeorology, 2013, 34(3): 301-305(in Chinese). doi: 10.3969/j.issn.1000-6362.2013.03.008
[12] 杨明, 许丽英, 宋雨, 等. 厌氧微生物作用下土壤中砷的形态转化及其分配 [J]. 生态毒理学报, 2013, 8(2): 178-185. doi: 10.7524/AJE.1673-5897.20130228001 YANG M, XU L Y, SONG Y, et al. Speciation transformation and distribution of arsenic in soils under action of anaerobic microbial activities [J]. Asian Journal of Ecotoxicology, 2013, 8(2): 178-185(in Chinese). doi: 10.7524/AJE.1673-5897.20130228001
[13] DENG Y X, WENG L P, LI Y T, et al. Redox-dependent effects of phosphate on arsenic speciation in paddy soils [J]. Environmental Pollution, 2020, 264: 114783. doi: 10.1016/j.envpol.2020.114783
[14] KÖGEL-KNABNER I, AMELUNG W, CAO Z H, et al. Biogeochemistry of paddy soils [J]. Geoderma, 2010, 157(1/2): 1-14.
[15] LIN Z J, WANG X, WU X, et al. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system [J]. Environmental Pollution, 2018, 243: 1015-1025. doi: 10.1016/j.envpol.2018.09.054
[16] ZHANG J, ZHAO S C, XU Y, et al. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils [J]. Environmental Science & Technology, 2017, 51(8): 4377-4386.
[17] CHEN Z L, AN L H, WEI H, et al. Nitrate alleviate dissimilatory iron reduction and arsenic mobilization by driving microbial community structure change [J]. Surfaces and Interfaces, 2021, 26: 101421. doi: 10.1016/j.surfin.2021.101421
[18] CHEN G N, DU Y H, FANG L P, et al. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies [J]. Science of the Total Environment, 2023, 854: 158801. doi: 10.1016/j.scitotenv.2022.158801
[19] ZHU X B, ZENG X C, CHEN X M, et al. Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water [J]. Ecotoxicology, 2019, 28(5): 528-538. doi: 10.1007/s10646-019-02050-0
[20] WU Y F, CHAI C W, LI Y N, et al. Anaerobic As(III) oxidation coupled with nitrate reduction and attenuation of dissolved arsenic by Noviherbaspirillum species [J]. ACS Earth and Space Chemistry, 2021, 5(8): 2115-2123. doi: 10.1021/acsearthspacechem.1c00155
[21] FANG J H, XIE Z M, WANG J, et al. Bacterially mediated release and mobilization of As/Fe coupled to nitrate reduction in a sediment environment [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111478. doi: 10.1016/j.ecoenv.2020.111478
[22] WANG X Q, LIU T X, LI F B, et al. Effects of simultaneous application of ferrous iron and nitrate on arsenic accumulation in rice grown in contaminated paddy soil [J]. ACS Earth and Space Chemistry, 2018, 2(2): 103-111. doi: 10.1021/acsearthspacechem.7b00115
[23] SUN T R, GUZMAN J J L, SEWARD J D, et al. Suppressing peatland methane production by electron snorkeling through pyrogenic carbon in controlled laboratory incubations [J]. Nature Communications, 2021, 12: 4119. doi: 10.1038/s41467-021-24350-y
[24] LUEDER U, MAISCH M, LAUFER K, et al. Influence of physical perturbation on Fe(II) supply in coastal marine sediments [J]. Environmental Science & Technology, 2020, 54(6): 3209-3218.
[25] LOCK A, WALLSCHLÄGER D, McMURDO C, et al. Validation of an updated fractionation and indirect speciation procedure for inorganic arsenic in oxic and suboxic soils and sediments [J]. Environmental Pollution, 2016, 219: 1102-1108. doi: 10.1016/j.envpol.2016.09.013
[26] WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure [J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2
[27] LI X M, QIAO J T, LI S A, et al. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil [J]. Environmental Science & Technology, 2020, 54(4): 2172-2181.
[28] XIAO Z X, JIANG Q T, LI Y, et al. Enhanced microbial nitrate reduction using natural manganese oxide ore as an electron donor [J]. Journal of Environmental Management, 2022, 306: 114497. doi: 10.1016/j.jenvman.2022.114497
[29] MAGUFFIN S C, ABU-ALI L, TAPPERO R V, et al. Influence of manganese abundances on iron and arsenic solubility in rice paddy soils [J]. Geochimica et Cosmochimica Acta, 2020, 276: 50-69. doi: 10.1016/j.gca.2020.02.012
[30] KAPPLER A, BRYCE C, MANSOR M, et al. An evolving view on biogeochemical cycling of iron [J]. Nature Reviews Microbiology, 2021, 19(6): 360-374. doi: 10.1038/s41579-020-00502-7
[31] LIU X L, ZHANG Y, LI X H, et al. Effects of influent nitrogen loads on nitrogen and COD removal in horizontal subsurface flow constructed wetlands during different growth periods of Phragmites australis [J]. Science of the Total Environment, 2018, 635: 1360-1366. doi: 10.1016/j.scitotenv.2018.03.260
[32] PIVOVAROV S. Diffuse sorption modeling: Apparent H/Na, or the same, Al/Na exchange on clays [J]. Journal of Colloid and Interface Science, 2009, 336(2): 898-901. doi: 10.1016/j.jcis.2009.04.018
[33] 孙丽蓉, 王旭刚, 郭大勇, 等. 旱作褐土中铁氧化物的厌氧还原动力学特征 [J]. 土壤学报, 2013, 50(1): 106-112. doi: 10.11766/trxb201201120013 SUN L R, WANG X G, GUO D Y, et al. Dynamics of anaerobic reduction of iron oxides in upland cinnamon soils [J]. Acta Pedologica Sinica, 2013, 50(1): 106-112(in Chinese). doi: 10.11766/trxb201201120013
[34] WANG Z, LIU X W, LIANG X F, et al. Flooding-drainage regulate the availability and mobility process of Fe, Mn, Cd, and As at paddy soil [J]. Science of the Total Environment, 2022, 817: 152898. doi: 10.1016/j.scitotenv.2021.152898
[35] 钱子妍, 吴川, 何璇, 等. 铁循环微生物对环境中重金属的影响研究进展 [J]. 环境化学, 2021, 40(3): 834-850. doi: 10.7524/j.issn.0254-6108.2020050901 QIAN Z Y, WU C, HE X, et al. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment [J]. Environmental Chemistry, 2021, 40(3): 834-850(in Chinese). doi: 10.7524/j.issn.0254-6108.2020050901
[36] SCHAEDLER F, KAPPLER A, SCHMIDT C. A revised iron extraction protocol for environmental samples rich in nitrite and carbonate [J]. Geomicrobiology Journal, 2018, 35(1): 23-30. doi: 10.1080/01490451.2017.1303554
[37] YU K W, BÖHME F, RINKLEBE J, et al. Major biogeochemical processes in soils-a microcosm incubation from reducing to oxidizing conditions [J]. Soil Science Society of America Journal, 2007, 71(4): 1406-1417. doi: 10.2136/sssaj2006.0155
[38] GUSTAVE W, YUAN Z F, SEKAR R, et al. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells [J]. Chemosphere, 2019, 237: 124459. doi: 10.1016/j.chemosphere.2019.124459
[39] JIANG W, HOU Q Y, YANG Z F, et al. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content [J]. Environmental Pollution, 2014, 188: 159-165. doi: 10.1016/j.envpol.2014.02.014
[40] JIA M R, TANG N, CAO Y, et al. Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis [J]. Chemosphere, 2019, 218: 1061-1070. doi: 10.1016/j.chemosphere.2018.11.145
[41] OREMLAND R S, STOLZ J F. Arsenic, microbes and contaminated aquifers [J]. Trends in Microbiology, 2005, 13(2): 45-49. doi: 10.1016/j.tim.2004.12.002
[42] FANG Y J, CHEN M J, LIU C S, et al. Arsenic release from microbial reduction of scorodite in the presence of electron shuttle in flooded soil [J]. Journal of Environmental Sciences, 2023, 126: 113-122. doi: 10.1016/j.jes.2022.05.018
[43] KUDO K, YAMAGUCHI N, MAKINO T, et al. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1 [J]. Applied and Environmental Microbiology, 2013, 79(15): 4635-4642. doi: 10.1128/AEM.00693-13
[44] NIAZI N K, BURTON E D. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition[J]. Environmental Pollution, 2016, 218: 111-117.
[45] ZHANG J, ZHOU W X, LIU B B, et al. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science Technology, 2015, 49(10): 5956-5964.
[46] RHINEE D, PHELPS C D, YOUNG L Y. Anaerobic arsenite oxidation by novel denitrifying isolates[J]. Environmental Microbiology, 2006, 8(5): 899-908.
[47] HOEFTMCCAN N S, BOREN A, HERNANDEZ-MALDONADO J, et al. Arsenite as an electron donor for anoxygenic photosynthesis: Description of three strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada[J]. Life, 2016, 7(1): 1.