[1] |
SCHOEPFER V A, BURTON E D. Schwertmannite: A review of its occurrence, formation, structure, stability and interactions with oxyanions[J]. Earth-Science Reviews, 2021: 221:103811.
|
[2] |
REGENSPURG S, BRAND A, PEIFFER S. Formation and stability of Schwertmannite in acidic mining lakes[J]. Geochimica etCosmochimica Acta, 2004, 68(6): 1185 − 1197. doi: 10.1016/j.gca.2003.07.015
|
[3] |
MOSLEY L M, DANG T, MCLAUGHLIN M J, et al. Extreme biogeochemical effects following simulation of recurrent drought in acid sulfate soils[J]. Applied Geochemistry, 2022, 136:105146.
|
[4] |
RIBEIRO J, TAFFAREL S R, SAMPAIO C H, et al. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal[J]. International Journal of Coal Geology, 2013, 109-110: 15 − 23. doi: 10.1016/j.coal.2013.01.007
|
[5] |
HOUNGALOUNE S, KAWAAI T, HIROYOSHI N, et al. Study on Schwertmannite production from copper heap leach solutions and its efficiency in arsenic removal from acidic sulfate solutions[J]. Hydrometallurgy, 2014, 147-148: 30 − 40. doi: 10.1016/j.hydromet.2014.04.001
|
[6] |
YING H, HUANG K, FENG X, et al. As(Ⅲ) adsorption–oxidation behavior and mechanisms on Cr(VI)-incorporated Schwertmannite[J]. Environmental Science:Nano, 2021, 8(6): 1593 − 1602. doi: 10.1039/D1EN00104C
|
[7] |
LI X, GUO C, JIN X, et al. Mechanisms of Cr(VI) adsorption on Schwertmannite under environmental disturbance: Changes in surface complex structures[J]. Journal of Hazardous Materials, 2021, 416: 125781. doi: 10.1016/j.jhazmat.2021.125781
|
[8] |
何楚城, 李晓飞, 祝紫莹, 等. 柠檬酸-施氏矿物复合体对Cd和Pb的吸附研究[J]. 环境科学学报, 2021, 41(12): 4793 − 4802.
|
[9] |
YAN S, ZHAN L, MENG X, et al. Role of Schwertmannite or jarosite in photocatalytic degradation of sulfamethoxazole in ultraviolet/peroxydisulfate system[J]. Separation and Purification Technology, 2021, 274:118991.
|
[10] |
王妍燕, 师欣茹, 毕文龙, 等. 施氏矿物协同Cu(II)活化过硫酸盐去除水中土霉素的效果[J]. 环境科学学报, 2021, 42(2): 108 − 116.
|
[11] |
周佳兴, 董燕, 刘奋武, 等. NaBH4对施氏矿物-黄铁矾生物化学合成的影响及矿物在催化降解甲基橙中的应用[J]. 环境工程学报, 2021, 15(4): 1242 − 1251.
|
[12] |
XIYANG H. A visual analysis of the research on the use of mobile phones by college students based on VOSviewer[J]. International Journal of Education and Management Engineering, 2020, 10(6): 10 − 16.
|
[13] |
OLAWUMI T O, CHAN D W M. A scientometric review of global research on sustainability and sustainable development[J]. Journal of Cleaner Production, 2018, 183: 231 − 250. doi: 10.1016/j.jclepro.2018.02.162
|
[14] |
陈甜倩, 高阳, 冯喆, 等. 基于CiteSpace的土壤生态系统服务研究热点与趋势[J]. 中国农业大学学报, 2021, 26(7): 204 − 219.
|
[15] |
DAVARAZAR M, JAHANIANFARD D, SHEIKHNEJAD Y, et al. Underground carbon dioxide sequestration for climate change mitigation – A scientometric study[J]. Journal of CO2 Utilization, 2019, 33: 179 − 188. doi: 10.1016/j.jcou.2019.05.022
|
[16] |
蒲生彦, 吕雪, 张颖. 基于文献计量的全球活化过硫酸盐氧化技术研究趋势分析[J]. 环境工程学报, 2020, 14(10): 2895 − 2908.
|
[17] |
KHALAJ M, KAMALI M, COSTA M E V, et al. Green synthesis of nanomaterials - A scientometric assessment[J]. Journal of Cleaner Production, 2020, 267:122036.
|
[18] |
WANG X, ZHANG Y, ZHANG J, et al. Progress in urban metabolism research and hotspot analysis based on CiteSpace analysis[J]. Journal of Cleaner Production, 2021, 281:125224.
|
[19] |
KASAVAN S, YUSOFF S, RAHMAT FAKRI M F, et al. Plastic pollution in water ecosystems: A bibliometric analysis from 2000 to 2020[J]. Journal of Cleaner Production, 2021, 313:127946.
|
[20] |
ACHARYA B S, KHAREL G. Acid mine drainage from coal mining in the United States – An overview[J]. Journal of Hydrology, 2020, 588:125061.
|
[21] |
CANOVAS C R, OLIAS M, NIETO J M, et al. Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents[J]. Science of The Total Environment, 2007, 373(1): 363 − 382. doi: 10.1016/j.scitotenv.2006.11.022
|
[22] |
SHRIVASTAVA R, MAHAJAN P. Artificial Intelligence Research in India: A Scientometric Analysis[J]. Science & Technology Libraries, 2016, 35(2): 136 − 151.
|
[23] |
ZHANG J, JIANG L, LIU Z, et al. A bibliometric and visual analysis of indoor occupation environmental health risks: Development, hotspots and trend directions[J]. Journal of Cleaner Production, 2021, 300:126824.
|
[24] |
BLGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2743 − 2758. doi: 10.1016/0016-7037(90)90009-A
|
[25] |
SáNCHEZ-ESPAñA J, YUSTA I, DIEZ-ERCILLA M. Schwertmannite and hydrobasaluminite: A re-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes[J]. Applied Geochemistry, 2011, 26(9-10): 1752 − 1774. doi: 10.1016/j.apgeochem.2011.06.020
|
[26] |
JöNSSON J, PERSSON P, SJöBERG S, et al. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties[J]. Applied Geochemistry, 2005, 20(1): 179 − 191. doi: 10.1016/j.apgeochem.2004.04.008
|
[27] |
REGENSPURG S, PEIFFER S. Arsenate and chromate incorporation in Schwertmannite[J]. Applied Geochemistry, 2005, 20(6): 1226 − 1239. doi: 10.1016/j.apgeochem.2004.12.002
|
[28] |
WANG X, YING H, ZHAO W, et al. Molecular-scale understanding of sulfate exchange from Schwertmannite by chromate versus arsenate[J]. Environmental Science & Technology, 2021, 55(9): 5857 − 5867.
|
[29] |
FRENCH R A, MONSEGUE N, MURAYAMA M, et al. The structure and transformation of the nanomineral Schwertmannite: a synthetic analog representative of field samples[J]. Physics and Chemistry of Minerals, 2013, 41(4): 237 − 246.
|
[30] |
ZHANG C, ZHANG Z, CHEN M, et al. The influence of fractal nature on Schwertmannite adsorption properties[J]. RSC Advances, 2017, 7(45): 27895 − 27899. doi: 10.1039/C7RA04114D
|
[31] |
BURTON E D, BUSH R T, JOHNSTON S G, et al. Sorption of arsenic(V) and arsenic(III) to Schwertmannite[J]. Environmental Science & Technology, 2009, 43(24): 9202 − 9207.
|
[32] |
李浙英, 梁剑茹, 柏双友, 等. 生物成因与化学成因施氏矿物的合成、表征及其对As(III)的吸附[J]. 环境科学学报, 2011, 31(3): 460 − 467.
|
[33] |
MORI J F, LU S, HANDEL M, et al. Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix[J]. Microbiology (Reading), 2016, 162(1): 62 − 71. doi: 10.1099/mic.0.000205
|
[34] |
ESKANDARPOUR A, ONYANGO M S, OCHIENG A, et al. Removal of fluoride ions from aqueous solution at low pH using Schwertmannite[J]. Journal of Hazardous Materials, 2008, 152(2): 571 − 579. doi: 10.1016/j.jhazmat.2007.07.020
|
[35] |
LI Y, MOHAN D, PITTMAN C U, et al. Removal of antimonate and antimonite from water by Schwertmannite granules[J]. Desalination and Water Treatment, 2016, 57(53): 25639 − 25652. doi: 10.1080/19443994.2016.1155176
|
[36] |
WANG W M, SONG J, HAN X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2[J]. Journal of Hazardous Materials, 2013, 262: 412 − 419. doi: 10.1016/j.jhazmat.2013.08.076
|
[37] |
PAIKARAY S. Environmental Stability of Schwertmannite: A Review[J]. Mine Water and the Environment, 2020, 40(3): 570 − 586.
|
[38] |
VITHANA C L, SULLIVAN L A, BURTON E D, et al. Liberation of acidity and arsenic from Schwertmannite: Effect of fulvic acid[J]. Chemical Geology, 2014, 372: 1 − 11. doi: 10.1016/j.chemgeo.2014.02.012
|
[39] |
CARABALLO M A, RIMSTIDT J D, MACíAS F, et al. Metastability, nanocrystallinity and pseudo-solid solution effects on the understanding of Schwertmannite solubility[J]. Chemical Geology, 2013, 360-361: 22 − 31. doi: 10.1016/j.chemgeo.2013.09.023
|
[40] |
BURTON E D, JOHNSTON S G, KRAAL P, et al. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of Schwertmannite[J]. Environmental Science & Technology, 2013, 47(5): 2221 − 2229.
|
[41] |
KUBICKI J D, TUNEGA D, KRAEMER S. A density functional theory investigation of oxalate and Fe(II) adsorption onto the (010) goethite surface with implications for ligand- and reduction-promoted dissolution[J]. Chemical Geology, 2017, 464: 14 − 22. doi: 10.1016/j.chemgeo.2016.08.010
|
[42] |
DOU X, MOHAN D, PITTMAN C U, JR. Arsenate adsorption on three types of granular Schwertmannite[J]. Water Research, 2013, 47(9): 2938 − 2948. doi: 10.1016/j.watres.2013.01.035
|
[43] |
ANTELO J, FIOL S, GONDAR D, et al. Comparison of arsenate, chromate and molybdate binding on Schwertmannite: surface adsorption vs anion-exchange[J]. Journal of Colloid and Interface Science, 2012, 386(1): 338 − 343. doi: 10.1016/j.jcis.2012.07.008
|
[44] |
GAN M, SUN S, ZHENG Z, et al. Adsorption of Cr(VI) and Cu(II) by AlPO4 modified biosynthetic Schwertmannite[J]. Applied Surface Science, 2015, 356: 986 − 997. doi: 10.1016/j.apsusc.2015.08.200
|
[45] |
HERMASSI M, GRANADOS M, VALDERRAMA C, et al. Recovery of rare earth elements from acidic mine waters: An unknown secondary resource[J]. Science of The Total Environment, 2022, 810: 152258. doi: 10.1016/j.scitotenv.2021.152258
|
[46] |
MA S, JING J, LIU P, et al. High selectivity and effectiveness for removal of tetracycline and its related drug resistance in food wastewater through Schwertmannite/graphene oxide catalyzed photo-Fenton-like oxidation[J]. Journal of Hazardous Materials, 2020, 392: 122437. doi: 10.1016/j.jhazmat.2020.122437
|
[47] |
LI T, WANG Z, ZHANG Z, et al. Organic carbon modified Fe3O4/Schwertmannite for heterogeneous Fenton reaction featuring synergistic in-situ H2O2 generation and activation[J]. Separation and Purification Technology, 2021, 276.
|
[48] |
LIU L D, WANG W M, LIU L, et al. Catalytic activities of dissolved and Sch-immobilized Mo in H2O2 decomposition: Implications for phenol oxidation under acidic conditions[J]. Applied Catalysis B:Environmental, 2016, 185: 371 − 377. doi: 10.1016/j.apcatb.2015.12.010
|
[49] |
ZHU Y, ZENG C, ZHU R, et al. TiO2/Schwertmannite nanocomposites as superior co-catalysts in heterogeneous photo-Fenton process[J]. Journal of Environmental Sciences (China), 2019, 80: 208 − 217. doi: 10.1016/j.jes.2018.12.014
|
[50] |
DUAN H, LIU Y, YIN X, et al. Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system[J]. Chemical Engineering Journal, 2016, 283: 873 − 879. doi: 10.1016/j.cej.2015.08.033
|
[51] |
YANG G C C, HUANG S C, WANG C L, et al. Degradation of phthalate esters and acetaminophen in river sediments using the electrokinetic process integrated with a novel Fenton-like process catalyzed by nanoscale Schwertmannite[J]. Chemosphere, 2016, 159: 282 − 292. doi: 10.1016/j.chemosphere.2016.04.119
|
[52] |
LI X, ZHANG Y, XIE Y, et al. Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized Schwertmannite catalyst[J]. Journal of Hazardous Materials, 2018, 344: 689 − 697. doi: 10.1016/j.jhazmat.2017.11.019
|
[53] |
王鹤茹, 宋永伟, 徐峙辉, 等. 化学合成施氏矿物与 H2O2共存体系下光化学处理垃圾渗滤液的研究[J]. 环境科学, 2014, 35(4): 1407 − 1413.
|
[54] |
LI T, ZHU P, WANG D, et al. Efficient utilization of the electron energy of antibiotics to accelerate Fe(III)/Fe(II) cycle in heterogeneous Fenton reaction induced by bamboo biochar/Schwertmannite[J]. Environmental research, 2022, 209: 112830. doi: 10.1016/j.envres.2022.112830
|
[55] |
CHAI L, TANG J, LIAO Y, et al. Biosynthesis of Schwertmannite by Acidithiobacillus ferrooxidans and its application in arsenic immobilization in the contaminated soil[J]. Journal of Soils and Sediments, 2016, 16(10): 2430 − 2438. doi: 10.1007/s11368-016-1449-7
|
[56] |
YANG Z, WU Z, LIAO Y, et al. Combination of microbial oxidation and biogenic Schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil[J]. Chemosphere, 2017, 181: 1 − 8. doi: 10.1016/j.chemosphere.2017.04.041
|