[1] |
ZHANG J, LI X C, CHEN P G, et al. Research status and prospect on vanadium-based catalysts for NH3-SCR denitration[J]. Materials (Basel), 2018, 11(9): 2-15.
|
[2] |
LIU H Z, TAN Q, JIANG X, et al. Comprehensive evaluation of flue gas desulfurization and denitrification technologies of six typical enterprises in Chengdu, China[J]. Environmental Science and Pollution Research, 2020, 27(36): 45824-45835. doi: 10.1007/s11356-020-10460-5
|
[3] |
XIONG S C, CHEN J J, LIU H, et al. Advances in the treatment of multi-pollutant flue gas in China's building materials industry[J]. Journal of Environmental Science (China), 2023, 123(01): 400-416.
|
[4] |
ANTHONSAMY S B I, AFANDI S B, KHAVARIAN M, et al. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide[J]. Beilstein Journal of Nanotechnol, 2018, 9(1): 740-761.
|
[5] |
WU Y, HU Z, ZHOU J-l, et al. Improvement in the resistance to KCl and PbCl2 synergistic poisoning of the commercial SCR catalyst by Ce(SO4)2 modification: A combined experimental and spin-polarized DFT study[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 2-11.
|
[6] |
TAN W, WANG J, CAI Y, et al. Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NO removal[J]. Catalysis Today, 2022, 397-399(01): 475-483.
|
[7] |
HAN Q, JIN S, WANG J, et al. Insights to sulfur-resistant mechanisms of reduced graphene oxide supported MnOx-CeOy catalysts for low-temperature NH3-SCR[J]. Journal of Physics and Chemistry of Solids, 2022, 167(01): 2-17.
|
[8] |
WU Z, JIN R, LIU Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Communications, 2008, 9(13): 2217-2220. doi: 10.1016/j.catcom.2008.05.001
|
[9] |
LAGUNA O H, ROMERO S F, CENTENO M A, et al. Gold supported on metal-doped ceria catalysts (M=Zr, Zn and Fe) for the preferential oxidation of CO (PROX)[J]. Journal of Catalysis, 2010, 276(2): 360-370. doi: 10.1016/j.jcat.2010.09.027
|
[10] |
熊天龙, 李艳松, 刘琪琪, 等. 焦化行业烟气低温SCR脱硝中试研究[J]. 四川化工, 2016, 19(1): 52-55. doi: 10.3969/j.issn.1672-4887.2016.01.015
|
[11] |
冀岗, 董卫杰, 李强, 等. 太钢烧结烟气氮氧化物超低排放技术研究[J]. 烧结球团, 2018, 43(2): 28-34. doi: 10.13403/j.sjqt.2018.02.031
|
[12] |
CHEN C, CAO Y, LIU S, et al. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chinese Journal of Catalysis, 2018, 39(8): 1347-1365. doi: 10.1016/S1872-2067(18)63090-6
|
[13] |
GAO X, LIU S, ZHANG Y, et al. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO[J]. Journal of Hazard Materials, 2011, 188(1-3): 58-66. doi: 10.1016/j.jhazmat.2011.01.065
|
[14] |
GAO X, LIU S, ZHANG Y, et al. Low temperature selective catalytic reduction of NO and NO2 with NH3 over activated carbon-supported vanadium oxide catalyst[J]. Catalysis Today, 2011, 175(1): 164-170. doi: 10.1016/j.cattod.2011.03.058
|
[15] |
JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. Journal of Hazard Materials, 2009, 162(2-3): 1249-54. doi: 10.1016/j.jhazmat.2008.06.013
|
[16] |
YANG J, MA H, YAMAMOTO Y, et al. SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces[J]. Chemical Engineering Journal, 2013, 230(1): 513-521.
|
[17] |
MA L, HE M Y, FU P B, et al. Adsorption of volatile organic compounds on modified spherical activated carbon in a new cyclonic fluidized bed[J]. Separation and Purification Technology, 2020, 235(1): 2-11.
|
[18] |
MA L, SHEN Q S, LI J P, et al. Efficient gas-liquid cyclone device for recycled hydrogen in a hydrogenation unit[J]. Chemical Engineering & Technology, 2014, 37(6): 1072-1078.
|
[19] |
MA L, XIANG G L, HUANG Y, et al. Effects of spherical adsorbent fluidization and self-rotation on removal of VOCs in a cyclonic fluidized bed[J]. Journal of Industrial and Engineering Chemistry, 2020, 85(01): 181-189.
|
[20] |
CHU K W, WANG B, YU A B, et al. CFD-DEM modelling of multiphase flow in dense medium cyclones[J]. Powder Technology, 2009, 193(3): 235-247. doi: 10.1016/j.powtec.2009.03.015
|
[21] |
CHU K W, WANG B, XU D L, et al. CFD–DEM simulation of the gas–solid flow in a cyclone separator[J]. Chemical Engineering Science, 2011, 66(5): 834-847. doi: 10.1016/j.ces.2010.11.026
|
[22] |
FU P B, ZHU J Y, LI Q Q, et al. DPM simulation of particle revolution and high-speed self-rotation in different pre-self-rotation cyclones[J]. Powder Technology, 2021, 394(01): 290-299.
|
[23] |
TIAN J Y, NI L, SONG T, et al. CFD simulation of hydrocyclone-separation performance influenced by reflux device and different vortex-finder lengths[J]. Separation and Purification Technology, 2020, 233(1): 2-15.
|
[24] |
ZHANG Y, LIU Y, QIAN P, et al. Experimental investigation of a minihydrocyclone[J]. Chemical Engineering & Technology, 2009, 32(8): 1274-1279.
|
[25] |
ZHANG Y, LIU P, GE J, et al. Simulation analysis on the separation performance of spiral inlet hydrocyclone[J]. International Journal of Coal Preparation and Utilization, 2021, 41(7): 474-490. doi: 10.1080/19392699.2021.1934828
|
[26] |
VAKAMALLA T R, MANGADODDY N. Numerical simulation of industrial hydrocyclones performance: Role of turbulence modelling[J]. Separation and Purification Technology, 2017, 176(1): 23-39.
|
[27] |
RAZMI H, SOLTANI G A, MOHEBBI A. CFD simulation of an industrial hydrocyclone based on multiphase particle in cell (MPPIC) method[J]. Separation and Purification Technology, 2019, 209(1): 851-862.
|
[28] |
赵国智, 孔凡让, 占惊春, 等. 基于SIMPLE算法的湍流场数值模拟[J]. 水电能源科学, 2007, 25(3): 100-102.
|
[29] |
BASSE N T. Turbulence intensity and the friction factor for smooth- and rough-wall pipe flow[J]. Fluids, 2017, 2(2): 2-13.
|