[1] |
王建军, 李田, 张颖, 等. 给水厂污泥改良生物滞留填料除磷效果的研究[J]. 环境科学, 2014, 35(12): 4642-4647. doi: 10.13227/j.hjkx.2014.12.030
|
[2] |
DAVIS A. P. , MCCUEN, R. H. Stormwater management for smart growth[J]. Springer Science & Business Media. 2005, 41(5): 1247-1258
|
[3] |
COFFMAN L S, GREEN R, CLAR M, et al. Development of bioretention practices for stormwater management[J]. Journal of Water Management Modeling, 1994, 176(2): 22-43.
|
[4] |
DAVIS A P, HUNT W F, TRAVER R G, et al. Bioretention technology: overview of current practice and future needs[J]. Journal of Environmental Engineering, 2009, 135(3): 109-117. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109)
|
[5] |
HUNT W F. Pollutant removal evaluation and hydraulic characterization for bioretention stormwater treatment devices[J]. Dissertation Abstracts International, 2003, 64(09): 4479-4495.
|
[6] |
SBERG L C, AL-RUBAEI A M, VIKLANDER M, et al. Phosphorus and TSS removal by stormwater bioretention: effects of temperature, salt, and a submerged zone and their interactions[J]. Water Air and Soil Pollution, 2020, 231(6): 1-12.
|
[7] |
CHAHAL M K, SHI Z, FLURY M, et al. Nutrient leaching and copper speciation in compost-amended bioretention systems[J]. Science of the Total Environment, 2016, 556(15): 302-309.
|
[8] |
LI J, LI L, DONG W, et al. Purification effects of amended bioretention columns on phosphorus in urban rainfall runoff[J]. Water Science and Technology, 2018, 78(9): 1937-1945. doi: 10.2166/wst.2018.464
|
[9] |
MARVIN J T, PASSEPORT E, DRAKE J, et al. State-of-the-art review of phosphorus sorption amendments in bioretention media: A systematic literature review[J]. Journal of Sustainable Water in the Built Environment, 2020, 6(4): 311-327.
|
[10] |
PASSEPORT E, HUNT W F, LINE D E, et al. Field study of the ability of two grassed bioretention cells to reduce storm-water runoff pollution[J]. Journal of Irrigation and Drainage Engineering, 2009, 135(4): 505-510. doi: 10.1061/(ASCE)IR.1943-4774.0000006
|
[11] |
LUCAS W C, GRENWAY M. Phosphorus retention by bioretention mesocosms using media formulated for phosphorus sorption: Response to accelerated loads[J]. Journal of Irrigation and Drainage Engineering, 2011, 137(3): 144-153. doi: 10.1061/(ASCE)IR.1943-4774.0000243
|
[12] |
BLECKEN G T, ZINGER Y, DELETIC A, et al. Laboratory study on stormwater biofiltration: Nutrient and sediment removal in cold temperatures[J]. Journal of Hydrology, 2010, 394(3-4): 507-514. doi: 10.1016/j.jhydrol.2010.10.010
|
[13] |
ERICKSON A J, GULLIVER J S, WEISS P T. Enhanced sand filtration for storm water phosphorus removal[J]. Journal of Environmental Engineering, 2007, 133(5): 485-497. doi: 10.1061/(ASCE)0733-9372(2007)133:5(485)
|
[14] |
LI J, DAVIS A P. A unified look at phosphorus treatment using bioretention[J]. Water Research, 2016, 90: 141-155. doi: 10.1016/j.watres.2015.12.015
|
[15] |
SHARPLEYA N. The selection erosion of plant nutrients in runoff[J]. Soil Science Society of America Journal, 1985, 49(6): 1527-1534. doi: 10.2136/sssaj1985.03615995004900060039x
|
[16] |
THOMAS S J, PIERZYNSKI G M. Chemistry of phosphorus in soils[J]. Chemical processes in soils, 2005, 8: 151-192.
|
[17] |
CHENG J, YUAN Q, KIM Y. Long-term operational studies of lab-scale pumice-woodchip packed stormwater biofilters[J]. Environmental technology, 2018, 39(14): 1765-1775. doi: 10.1080/09593330.2017.1337816
|
[18] |
HSIEH, C. ; DAVIS, A. P. Evaluation and optimization of bioretention media for treatment of urban storm water runoff[J]. Journal of Environmental Engineering, 2005, 131(11): 1521-1531. doi: 10.1061/(ASCE)0733-9372(2005)131:11(1521)
|
[19] |
贾志航. 苹果园土壤无机磷库特征及葡萄糖对土壤磷组分和磷素利用的影响[D]. 山东: 山东农业大学, 2020.
|
[20] |
许春雪, 袁建, 王亚平, 等. 沉积物中磷的赋存形态及磷形态顺序提取分析方法[J]. 岩矿测试, 2011, 30(6): 785-794. doi: 10.3969/j.issn.0254-5357.2011.06.024
|
[21] |
林立君, 张志辉. 粉煤灰除磷实验研究[J]. 粉煤灰综合利用, 2010(2): 29-29. doi: 10.3969/j.issn.1005-8249.2010.02.009
|
[22] |
陈田耕. 关于磷自沉积物的释放[J]. 环境污染治理技术与设备, 1988, 9(1): 36-42.
|
[23] |
DE A L M C, SAMPAIO E V D S B, De A M D S B. Phosphorus desorption from Fe and Al oxides mediated by soil microorganisms[J]. Communications in Soil Science and Plant Analysis, 2015, 46(5): 633-640. doi: 10.1080/00103624.2015.1005218
|
[24] |
仇付国, 卢超, 代一帆, 等. 改良雨水生物滞留系统除污效果及基质中磷的形态分布研究[J]. 给水排水, 2017, 53(3): 48-54. doi: 10.3969/j.issn.1002-8471.2017.03.010
|
[25] |
FILIPPELLI G M, DELANEY M L. Phosphorus geochemistry of equatorial pacific sediments[J]. Geochimica Et Cosmochimica Acta, 1996, 60(9): 0-1495.
|
[26] |
黄敏, 尹维文, 余婉霞, 等. 两种外源性有机物料对土壤磷变化的影响[J]. 农业环境科学学报, 2015, 34(3): 501-508. doi: 10.11654/jaes.2015.03.012
|
[27] |
HUNT W F, JARREET A R, Smith J T, et al. Evaluating Bioretention hydrology and nutrient removal at three field sites in north carolina[J]. Journal of Irrigation and Drainage Engineering, 2006, 132(6): 600-608. doi: 10.1061/(ASCE)0733-9437(2006)132:6(600)
|
[28] |
陈豁然, 杨梦兵, 王中伟, 等. 底泥磷形态及分布特征对水体富营养化的影响[J]. 污染防治技术, 2009, 22(5): 81-83.
|
[29] |
王超, 邹丽敏, 王沛芳, 等. 典型城市浅水湖泊沉积物中磷与铁的形态分布及相关关系[J]. 环境科学, 2008, 29(12): 3400-3404. doi: 10.3321/j.issn:0250-3301.2008.12.018
|
[30] |
韩年, 袁旭音, 周慧华, 等. 洪泽湖入湖河流沉积物有机磷分布特征及外源输入对其形态转化的影响[J]. 湖泊科学, 2020, 32(3): 665-675. doi: 10.18307/2020.0307
|
[31] |
ZHANG W, ZHU X, JIN X, et al. Evidence for organic phosphorus activation and transformation at the sediment–water interface during plant debris decomposition[J]. Science of the Total Environment, 2017, 58(3): 458-465.
|