[1] |
BURKE V, RICHTER D, GRESKOWIAK J, et al. Occurrence of antibiotics in surface and groundwater of a drinking water catchment area in Germany [J]. Water Environment Research, 2016, 88(7): 652-659. doi: 10.2175/106143016X14609975746604
|
[2] |
ZHANG L J, TAO H C. Bioelectro-Fenton System for Environmental Pollutant Degradation[M]//WANG AJ, LIANG B, LI ZL, et al. Bioelectrochemistry Stimulated Environmental Remediation. Singapore: Springer, 2019: 245-267.
|
[3] |
NIDHEESH P V, GANDHIMATHI R. Trends in electro-Fenton process for water and wastewater treatment: An overview [J]. Desalination, 2012, 299: 1-15. doi: 10.1016/j.desal.2012.05.011
|
[4] |
GARCIA-RODRIGUEZ O, LEE Y Y, OLVERA-VARGAS H, et al. Mineralization of electronic wastewater by electro-Fenton with an enhanced graphene-based gas diffusion cathode [J]. Electrochimica Acta, 2018, 276: 12-20. doi: 10.1016/j.electacta.2018.04.076
|
[5] |
ZHANG Z H, MENG H S, WANG Y J, et al. Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in Electro-Fenton process [J]. Electrochimica Acta, 2017, 260: 112-120.
|
[6] |
DENG F X, LI S X, CAO Y L, et al. A dual-cathode pulsed current electro-Fenton system: Improvement for H2O2 accumulation and Fe3+ reduction [J]. Journal of Power Sources, 2020, 466: 228342. doi: 10.1016/j.jpowsour.2020.228342
|
[7] |
BRILLAS E, BASTIDA R M, LLOSA E, et al. Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O 2 - Fed Cathode [J]. Journal of the Electrochemical Society, 1995, 142(6): 1733-1741. doi: 10.1149/1.2044186
|
[8] |
BRILLAS E, MUR E, CASADO J. Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O 2 - Fed cathode [J]. Journal of the Electrochemical Society, 1996, 143(3): L49-L53. doi: 10.1149/1.1836528
|
[9] |
BRILLAS E, CALPE J C, CASADO J. Mineralization of 2, 4-D by advanced electrochemical oxidation processes [J]. Water Research, 2000, 34(8): 2253-2262. doi: 10.1016/S0043-1354(99)00396-6
|
[10] |
ZHAO Q, AN J K, WANG S, et al. Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction [J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35410-35419.
|
[11] |
LI N, AN J K, ZHOU L A, et al. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems [J]. Journal of Power Sources, 2016, 306: 495-502. doi: 10.1016/j.jpowsour.2015.12.078
|
[12] |
XIAO Y, HILL J M. Benefit of hydrophilicity for adsorption of methyl orange and electro-Fenton regeneration of activated carbon-polytetrafluoroethylene electrodes [J]. Environmental Science & Technology, 2018, 52(20): 11760-11768.
|
[13] |
ZHANG H C, LI Y J, LI G H, et al. Scaling up floating air cathodes for energy-efficient H2O2 generation and electrochemical advanced oxidation processes [J]. Electrochimica Acta, 2019, 299: 273-280. doi: 10.1016/j.electacta.2019.01.010
|
[14] |
SUN X P, LV J J, YAN Z H, et al. A three-dimensional gas diffusion electrode without external aeration for producing H2O2 and eliminating amoxicillin using electro-Fenton process [J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107301. doi: 10.1016/j.jece.2022.107301
|
[15] |
王鑫 , 李 安. 模块化空气自扩散阴极-钛铱阳极电极组及阴极制备方法[P]. 2021.
|
[16] |
YU F K, ZHOU M H, YU X M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration [J]. Electrochimica Acta, 2015, 163: 182-189. doi: 10.1016/j.electacta.2015.02.166
|
[17] |
YANG H J, ZHOU M H, YANG W L, et al. Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid [J]. Chemosphere, 2018, 206: 439-446. doi: 10.1016/j.chemosphere.2018.05.027
|
[18] |
NIKOLOVA V, ILIEV P, PETROV K, et al. Electrocatalysts for bifunctional oxygen/air electrodes [J]. Journal of Power Sources, 2008, 185(2): 727-733. doi: 10.1016/j.jpowsour.2008.08.031
|
[19] |
JHONG H, BRUSHETT F, KENIS P. Fuel cells: The effects of catalyst layer deposition methodology on electrode performance (adv. energy mater. 5/2013) [J]. Advanced Energy Materials, 2013, 3: 541. doi: 10.1002/aenm.201370019
|
[20] |
JAYANTHI E, MURUGESAN N, ANTHONYSAMY S, et al. Comparative study of sensing behavior of brush coated, electrodeposited and pulsed electrodeposited Pt/GDE based amperometric hydrogen sensors [J]. Sensors and Actuators B:Chemical, 2018, 273: 488-497. doi: 10.1016/j.snb.2018.05.181
|
[21] |
SU H Z, CHU Y Y, MIAO B Y. Degreasing cotton used as pore-creating agent to prepare hydrophobic and porous carbon cathode for the electro-Fenton system: Enhanced H2O2 generation and RhB degradation [J]. Environmental Science and Pollution Research, 2021, 28(25): 33570-33582. doi: 10.1007/s11356-021-12965-z
|
[22] |
ZHANG Q Z, ZHOU M H, REN G B, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion [J]. Nature Communications, 2020, 11(1): 1-11. doi: 10.1038/s41467-019-13993-7
|
[23] |
LU J, LIU X C, CHEN Q Y, et al. Coupling effect of nitrogen-doped carbon black and carbon nanotube in assembly gas diffusion electrode for H2O2 electro-generation and recalcitrant pollutant degradation [J]. Separation and Purification Technology, 2021, 265: 118493. doi: 10.1016/j.seppur.2021.118493
|
[24] |
ZHANG H C, LI Y J, ZHANG H, et al. A three-dimensional floating air cathode with dual oxygen supplies for energy-efficient production of hydrogen peroxide [J]. Scientific Reports, 2019, 9(1): 1-10. doi: 10.1038/s41598-018-37186-2
|
[25] |
LI H H, QUISPE-CARDENAS E, YANG S S, et al. Electrosynthesis of >20 g/L H 2O2 from air [J]. ACS ES& T Engineering, 2022, 2(2): 242-250.
|
[26] |
PÉREZ J, GALIA A, RODRIGO M, et al. Effect of pressure on the electrochemical generation of hydrogen peroxide in undivided cells on carbon felt electrodes [J]. Electrochimica Acta, 2017, 248: 169-177. doi: 10.1016/j.electacta.2017.07.116
|
[27] |
GUO S S, CHEN M, ZENG Q T, et al. Energy-efficient H2O2 electro-production based on an integrated natural air-diffusion cathode and its application [J]. ACS ES& T Water, 2022, 2(10): 1647-1658.
|
[28] |
PAN G F, SUN X P, SUN Z R. Fabrication of multi-walled carbon nanotubes and carbon black co-modified graphite felt cathode for amoxicillin removal by electrochemical advanced oxidation processes under mild pH condition [J]. Environmental Science and Pollution Research, 2020, 27(8): 8231-8247. doi: 10.1007/s11356-019-07358-2
|
[29] |
YU F K, CHEN Y, MA H R. Ultrahigh yield of hydrogen peroxide and effective diclofenac degradation on a graphite felt cathode loaded with CNTs and carbon black: An electro-generation mechanism and a degradation pathway [J]. New Journal of Chemistry, 2018, 42(6): 4485-4494. doi: 10.1039/C7NJ04925K
|
[30] |
WANG N, MA S B, ZUO P J, et al. Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction [J]. Advanced Science, 2021, 8(15): 2100076. doi: 10.1002/advs.202100076
|
[31] |
ZHU Y S, DENG F X, QIU S, et al. Enhanced electro-Fenton degradation of sulfonamides using the N, S co-doped cathode: Mechanism for H2O2 formation and pollutants decay [J]. Journal of Hazardous Materials, 2021, 403: 123950. doi: 10.1016/j.jhazmat.2020.123950
|
[32] |
GAO S Y, LI L Y, GENG K R, et al. Recycling the biowaste to produce nitrogen and sulfur self-doped porous carbon as an efficient catalyst for oxygen reduction reaction [J]. Nano Energy, 2015, 16: 408-418. doi: 10.1016/j.nanoen.2015.07.009
|
[33] |
SU P, ZHOU M H, LU X Y, et al. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in situ degradation of organic pollutant [J]. Applied Catalysis B:Environmental, 2019, 245: 583-595. doi: 10.1016/j.apcatb.2018.12.075
|
[34] |
YU F K, YANG Y, ZHANG Y F, et al. Electrochemical fabrication of polyaniline films deposited on graphene-loaded electrodes for •OH production and perfluorooctanoic acid degradation [J]. Chemical Engineering Journal, 2022, 450: 137914. doi: 10.1016/j.cej.2022.137914
|
[35] |
LIU J, SONG P, RUAN M B, et al. Catalytic properties of graphitic and pyridinic nitrogen doped on carbon black for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2016, 37(7): 1119-1126. doi: 10.1016/S1872-2067(16)62456-7
|
[36] |
BARROS W R P, REIS R M, ROCHA R S, et al. Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine [J]. Electrochimica Acta, 2013, 104: 12-18. doi: 10.1016/j.electacta.2013.04.079
|
[37] |
ANTONIN V S, PARREIRA L S, AVEIRO L R, et al. Email protected]nanostructures modifying carbon as materials for hydrogen peroxide electrogeneration [J]. Electrochimica Acta, 2017, 231: 713-720. doi: 10.1016/j.electacta.2017.01.192
|
[38] |
KRONKA M S, CORDEIRO-JUNIOR P J M, MIRA L, et al. Sustainable microwave-assisted hydrothermal synthesis of carbon-supported ZrO2 nanoparticles for H2O2 electrogeneration [J]. Materials Chemistry and Physics, 2021, 267: 124575. doi: 10.1016/j.matchemphys.2021.124575
|
[39] |
HE H H, JIANG B, YUAN J J, et al. Cost-effective electrogeneration of H2O2 utilizing HNO3 modified graphite/polytetrafluoroethylene cathode with exterior hydrophobic film [J]. Journal of Colloid and Interface Science, 2019, 533: 471-480. doi: 10.1016/j.jcis.2018.08.092
|
[40] |
WANG S, MA H R. Co-catalysis of metal sulfides accelerating Fe2+/Fe3+ cycling for the removal of tetracycline in heterogeneous electro-Fenton using an novel rolled NPC/CB cathodes [J]. Separation and Purification Technology, 2021, 275: 119200. doi: 10.1016/j.seppur.2021.119200
|
[41] |
LU X Y, ZHOU M H, LI Y W, et al. Improving the yield of hydrogen peroxide on gas diffusion electrode modified with tert-butyl-anthraquinone on different carbon support [J]. Electrochimica Acta, 2019, 320: 134552. doi: 10.1016/j.electacta.2019.07.063
|
[42] |
RIDRUEJO C, ALCAIDE F, ÁLVAREZ G, et al. On-site H2O2 electrogeneration at a CoS2-based air-diffusion cathode for the electrochemical degradation of organic pollutants [J]. Journal of Electroanalytical Chemistry, 2018, 808: 364-371. doi: 10.1016/j.jelechem.2017.09.010
|
[43] |
CHU Y Y, SU H Z, LIU C, et al. Fabrication of sandwich-like super-hydrophobic cathode for the electro-Fenton degradation of cefepime: H2O2 electro-generation, degradation performance, pathway and biodegradability improvement [J]. Chemosphere, 2022, 286: 131669. doi: 10.1016/j.chemosphere.2021.131669
|
[44] |
YU F K, WANG Y, MA H R. Enhancing the yield of H2O2 from oxygen reduction reaction performance by hierarchically porous carbon modified active carbon fiber as an effective cathode used in electro-Fenton [J]. Journal of Electroanalytical Chemistry, 2019, 838: 57-65. doi: 10.1016/j.jelechem.2019.02.036
|
[45] |
MOUSSET E, KO Z T, SYAFIQ M, et al. Electrocatalytic activity enhancement of a graphene ink-coated carbon cloth cathode for oxidative treatment [J]. Electrochimica Acta, 2016, 222: 1628-1641. doi: 10.1016/j.electacta.2016.11.151
|
[46] |
LI G S, ZHANG Y G. Highly selective two-electron oxygen reduction to generate hydrogen peroxide using graphite felt modified with N-doped graphene in an electro-Fenton system [J]. New Journal of Chemistry, 2019, 43(32): 12657-12667. doi: 10.1039/C9NJ02601K
|
[47] |
XU A L, HE B, YU H X, et al. A facile solution to mature cathode modified by hydrophobic dimethyl silicon oil (DMS) layer for electro-Fenton processes: Water proof and enhanced oxygen transport [J]. Electrochimica Acta, 2019, 308: 158-166. doi: 10.1016/j.electacta.2019.04.047
|
[48] |
ZHOU M H, YU Q H, LEI L C. The preparation and characterization of a graphite–PTFE cathode system for the decolorization of C. I. Acid Red 2 [J]. Dyes and Pigments, 2008, 77(1): 129-136. doi: 10.1016/j.dyepig.2007.04.002
|
[49] |
TIAN J N, OLAJUYIN A M, MU T Z, et al. Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process [J]. Environmental Science and Pollution Research, 2016, 23(12): 11574-11583. doi: 10.1007/s11356-016-6360-7
|
[50] |
ZHOU L, ZHOU M H, HU Z X, et al. Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation [J]. Electrochimica Acta, 2014, 140: 376-383. doi: 10.1016/j.electacta.2014.04.090
|
[51] |
LUO H J, LI C L, WU C Q, et al. Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode [J]. Electrochimica Acta, 2015, 186: 486-493. doi: 10.1016/j.electacta.2015.10.194
|
[52] |
KUBO D C, KAWASE Y. Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode [J]. Journal of Cleaner Production, 2018, 203: 685-695. doi: 10.1016/j.jclepro.2018.08.231
|
[53] |
ISARAIN-CHÁVEZ E, ARIAS C, CABOT P L, et al. Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration [J]. Applied Catalysis B:Environmental, 2010, 96(3/4): 361-369.
|
[54] |
YATAGAI T, OHKAWA Y, KUBO D C, et al. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(1): 74-83.
|
[55] |
YU X M, ZHOU M H, REN G B, et al. A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton [J]. Chemical Engineering Journal, 2015, 263: 92-100. doi: 10.1016/j.cej.2014.11.053
|
[56] |
WANG H, WANG J L. Electrochemical degradation of 2, 4-dichlorophenol on a palladium modified gas-diffusion electrode [J]. Electrochimica Acta, 2008, 53(22): 6402-6409. doi: 10.1016/j.electacta.2008.04.080
|
[57] |
LI Y, ZHANG Y X, XIA G S, et al. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment [J]. Frontiers of Environmental Science & Engineering, 2021, 15(1): 1.
|
[58] |
LING Y F, XU H L, CHEN X M. Continuous multi-cell electrochemical reactor for pollutant oxidation [J]. Chemical Engineering Science, 2015, 122: 630-636. doi: 10.1016/j.ces.2014.10.031
|
[59] |
MOREIRA F C, GARCIA-SEGURA S, BOAVENTURA R A R, et al. Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode [J]. Applied Catalysis B:Environmental, 2014, 160/161: 492-505. doi: 10.1016/j.apcatb.2014.05.052
|
[60] |
MÁRQUEZ A A, SIRÉS I, BRILLAS E, et al. Mineralization of Methyl Orange azo dye by processes based on H2O2 electrogeneration at a 3D-like air-diffusion cathode [J]. Chemosphere, 2020, 259: 127466. doi: 10.1016/j.chemosphere.2020.127466
|
[61] |
MA L, ZHOU M H, REN G B, et al. A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation [J]. Electrochimica Acta, 2016, 200: 222-230. doi: 10.1016/j.electacta.2016.03.181
|
[62] |
JIAO Y L, MA L, TIAN Y S, et al. A flow-through electro-Fenton process using modified activated carbon fiber cathode for orange II removal [J]. Chemosphere, 2020, 252: 126483. doi: 10.1016/j.chemosphere.2020.126483
|
[63] |
MORALEDA I, LLANOS J, SÁEZ C, et al. Integration of anodic and cathodic processes for the synergistic electrochemical production of peracetic acid [J]. Electrochemistry Communications, 2016, 73: 1-4. doi: 10.1016/j.elecom.2016.10.010
|
[64] |
ZHANG Q Z, ZHOU M H, LANG Z C, et al. Dual strategies to enhance mineralization efficiency in innovative electrochemical advanced oxidation processes using natural air diffusion electrode: Improving both H2O2 production and utilization efficiency [J]. Chemical Engineering Journal, 2021, 413: 127564. doi: 10.1016/j.cej.2020.127564
|
[65] |
LI Y W, LIU L W, ZHANG Q Z, et al. Highly cost-effective removal of 2, 4-dichlorophenoxiacetic acid by peroxi-coagulation using natural air diffusion electrode [J]. Electrochimica Acta, 2021, 377: 138079. doi: 10.1016/j.electacta.2021.138079
|
[66] |
WANG G, YAO Y C, TANG K, et al. Cost-efficient microbial electrosynthesis of hydrogen peroxide on a facile-prepared floating electrode by entrapping oxygen [J]. Bioresource Technology, 2021, 342: 125995. doi: 10.1016/j.biortech.2021.125995
|
[67] |
QIAO H, HE M Q, WANG Q S, et al. Cost-effective method of benzene-containing wastewater treatment using floating electro-Fenton system [J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2021, 83(9): 2183-2191. doi: 10.2166/wst.2021.124
|
[68] |
WANG W, LI Y C, LI Y W, et al. Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration [J]. Chemosphere, 2020, 250: 126177. doi: 10.1016/j.chemosphere.2020.126177
|
[69] |
PÉREZ J F, LLANOS J, SÁEZ C, et al. The jet aerator as oxygen supplier for the electrochemical generation of H2O2 [J]. Electrochimica Acta, 2017, 246: 466-474. doi: 10.1016/j.electacta.2017.06.085
|
[70] |
PÉREZ J F, LLANOS J, SÁEZ C, et al. Electrochemical jet-cell for the in situ generation of hydrogen peroxide [J]. Electrochemistry Communications, 2016, 71: 65-68. doi: 10.1016/j.elecom.2016.08.007
|
[71] |
PÉREZ J F, LLANOS J, SÁEZ C, et al. On the design of a jet-aerated microfluidic flow-through reactor for wastewater treatment by electro-Fenton [J]. Separation and Purification Technology, 2019, 208: 123-129. doi: 10.1016/j.seppur.2018.04.021
|
[72] |
CHEN Y, YuweiPAN, et al. A cost-effective production of hydrogen peroxide via improved mass transfer of oxygen for electro-Fenton process using the vertical flow reactor [J]. Separation and Purification Technology, 2020, 241: 116695. doi: 10.1016/j.seppur.2020.116695
|
[73] |
QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment [J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016
|
[74] |
BARAN W, ADAMEK E, ZIEMIAŃSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health [J]. Journal of Hazardous Materials, 2011, 196: 1-15. doi: 10.1016/j.jhazmat.2011.08.082
|
[75] |
SUPURAN C T. Special issue: Sulfonamides [J]. Molecules (Basel, Switzerland), 2017, 22(10): 1642. doi: 10.3390/molecules22101642
|
[76] |
QIN L T, PANG X R, ZENG H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian Karst wetland in Guilin, China [J]. Science of the Total Environment, 2020, 708: 134552. doi: 10.1016/j.scitotenv.2019.134552
|
[77] |
DUAN W Y, CUI H W, JIA X Y, et al. Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review [J]. Science of the Total Environment, 2022, 820: 153178. doi: 10.1016/j.scitotenv.2022.153178
|
[78] |
EL-GHENYMY A, OTURAN N, OTURAN M A, et al. Comparative electro-Fenton and UVA photoelectro-Fenton degradation of the antibiotic sulfanilamide using a stirred BDD/air-diffusion tank reactor [J]. Chemical Engineering Journal, 2013, 234: 115-123. doi: 10.1016/j.cej.2013.08.080
|
[79] |
EL-GHENYMY A, RODRÍGUEZ R M, ARIAS C, et al. Electro-Fenton and photoelectro-Fenton degradation of the antimicrobial sulfamethazine using a boron-doped diamond anode and an air-diffusion cathode [J]. Journal of Electroanalytical Chemistry, 2013, 701: 7-13. doi: 10.1016/j.jelechem.2013.04.027
|
[80] |
de BAERE S, de BACKER P. Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection [J]. Analytica Chimica Acta, 2007, 586(1/2): 319-325.
|
[81] |
MATSUBARA M E, HELWIG K, HUNTER C, et al. Amoxicillin removal by pre-denitrification membrane bioreactor (A/O-MBR): Performance evaluation, degradation by-products, and antibiotic resistant bacteria [J]. Ecotoxicology and Environmental Safety, 2020, 192: 110258. doi: 10.1016/j.ecoenv.2020.110258
|
[82] |
GARZA-CAMPOS B, MORALES-ACOSTA D, HERNÁNDEZ-RAMÍREZ A, et al. Air diffusion electrodes based on synthetized mesoporous carbon for application in amoxicillin degradation by electro-Fenton and solar photo electro-Fenton [J]. Electrochimica Acta, 2018, 269: 232-240. doi: 10.1016/j.electacta.2018.02.139
|
[83] |
van DOORSLAER X, DEWULF J, van LANGENHOVE H, et al. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants [J]. Science of the Total Environment, 2014, 500/501: 250-269. doi: 10.1016/j.scitotenv.2014.08.075
|
[84] |
GIRIJAN S K, PAUL R, V J R K, et al. Investigating the impact of hospital antibiotic usage on aquatic environment and aquaculture systems: A molecular study of quinolone resistance in Escherichia coli [J]. Science of the Total Environment, 2020, 748: 141538. doi: 10.1016/j.scitotenv.2020.141538
|
[85] |
WATKINSON A J, MURBY E J, COSTANZO S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling [J]. Water Research, 2007, 41(18): 4164-4176. doi: 10.1016/j.watres.2007.04.005
|
[86] |
CORNEJO O M, NAVA J L. Mineralization of the antibiotic levofloxacin by the electro-peroxone process using a filter-press flow cell with a 3D air-diffusion electrode [J]. Separation and Purification Technology, 2021, 254: 117661. doi: 10.1016/j.seppur.2020.117661
|
[87] |
LIU Z J, WAN J Q, YAN Z C, et al. Efficient removal of ciprofloxacin by heterogeneous electro-Fenton using natural air–cathode [J]. Chemical Engineering Journal, 2022, 433: 133767. doi: 10.1016/j.cej.2021.133767
|
[88] |
LIMA V B, GOULART L A, ROCHA R S, et al. Degradation of antibiotic ciprofloxacin by different AOP systems using electrochemically generated hydrogen peroxide [J]. Chemosphere, 2020, 247: 125807. doi: 10.1016/j.chemosphere.2019.125807
|
[89] |
GUINEA E, GARRIDO J A, RODRÍGUEZ R M, et al. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration [J]. Electrochimica Acta, 2010, 55(6): 2101-2115. doi: 10.1016/j.electacta.2009.11.040
|
[90] |
YU D H, HE J G, WANG Z Y, et al. Mineralization of norfloxacin in a CoFe–LDH/CF cathode-based heterogeneous electro-Fenton system: Preparation parameter optimization of the cathode and conversion mechanisms of H2O2 to ·OH [J]. Chemical Engineering Journal, 2021, 417: 129240. doi: 10.1016/j.cej.2021.129240
|
[91] |
DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review [J]. Environmental Chemistry Letters, 2013, 11(3): 209-227. doi: 10.1007/s10311-013-0404-8
|
[92] |
CUI L L, LI Z W, LI Q Q, et al. Cu/CuFe2O4 integrated graphite felt as a stable bifunctional cathode for high-performance heterogeneous electro-Fenton oxidation [J]. Chemical Engineering Journal, 2021, 420: 127666. doi: 10.1016/j.cej.2020.127666
|
[93] |
XIN S S, HUO S Y, XIN Y J, et al. Heterogeneous photo-electro-Fenton degradation of tetracycline through nitrogen/oxygen self-doped porous biochar supported CuFeO2 multifunctional cathode catalyst under visible light [J]. Applied Catalysis B:Environmental, 2022, 312: 121442. doi: 10.1016/j.apcatb.2022.121442
|