[1] |
BAUTITZ I R, VELOSA A C, NOGUEIRA R F P. Zero valent iron mediated degradation of the pharmaceutical diazepam[J]. Chemosphere, 2012, 88(6): 688-692. doi: 10.1016/j.chemosphere.2012.03.077
|
[2] |
WU N, QIAO M, ZHANG B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science Technology, 2010, 44(18): 6933-6939. doi: 10.1021/es1007802
|
[3] |
SHAO Y, GAO Y, YUE Q, et al. Degradation of chlortetracycline with simultaneous removal of copper (II) from aqueous solution using wheat straw-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2020, 379: 122384. doi: 10.1016/j.cej.2019.122384
|
[4] |
WANG X, DU Y, MA J. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole[J]. Applied Surface Science, 2016, 390: 50-59. doi: 10.1016/j.apsusc.2016.08.027
|
[5] |
LIU X, CAO Z, YUAN Z, et al. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2018, 334: 508-518. doi: 10.1016/j.cej.2017.10.060
|
[6] |
WANG X, LIU P, MA J, et al. Preparation of novel composites based on hydrophilized and functionalized polyacrylonitrile membrane-immobilized nZVI for reductive transformation of metronidazole[J]. Applied Surface Science, 2017, 396: 841-850. doi: 10.1016/j.apsusc.2016.11.039
|
[7] |
张唯, 沈峥, 王晨璐, 等. 纳米零价铁的改性及其在废水处理中的应用综述[J]. 净水技术, 2016, 35(4): 23-30. doi: 10.15890/j.cnki.jsjs.2016.04.004
|
[8] |
GRIEGER K D, FJORDBOGE A, HARTMANN N B, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off[J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 165-183.
|
[9] |
CAO Z, LIU X, XU J, et al. Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron[J]. Environmental Science Technology, 2017, 51(19): 11269-11277. doi: 10.1021/acs.est.7b02480
|
[10] |
LING C, LIU F Q, XU C, et al. An integrative technique based on synergistic coremoval and sequential recovery of copper and tetracycline with dual-functional chelating resin: roles of amine and carboxyl groups[J]. ACS Applied Materials Interfaces, 2013, 5(22): 11808-11817. doi: 10.1021/am403491b
|
[11] |
TUREL I. The interactions of metal ions with quinolone antibacterial agents[J]. Coordination Chemistry Reviews, 2002, 232(1/2): 27-47.
|
[12] |
MA Y, ZHOU Q, ZHOU S, et al. A bifunctional adsorbent with high surface area and cation exchange property for synergistic removal of tetracycline and Cu2+[J]. Chemical Engineering Journal, 2014, 258: 26-33. doi: 10.1016/j.cej.2014.07.096
|
[13] |
杜毅, 王向宇. 新型纳米零价铁的绿色合成和改性工艺研究进展[J]. 环境化学, 2016, 35(2): 337-347.
|
[14] |
MARKOVA Z, NOVAK P, KASLIK J, et al. Iron (II, III)–polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact[J]. ACS Sustainable Chemistry Engineering, 2014, 2(7): 1674-1680. doi: 10.1021/sc5001435
|
[15] |
康海彦, 杨治广, 万园园. β-环糊精包埋纳米零价铁对Cd2+的去除性能研究[J]. 环境工程, 2015, 33(5): 122-125.
|
[16] |
颜小星, 柳听义, 王中良. 壳聚糖-纳米零价铁球去除水中二价镉的研究[J]. 天津师范大学学报(自然科学版), 2014, 34(3): 42-46.
|
[17] |
NADAGOUDA M N, VARMA R S. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods[J]. Green Chemistry, 2006, 8(6): 516-518. doi: 10.1039/b601271j
|
[18] |
RUIZ P, MUNOZ M, MACANAS J, et al. Intermatrix synthesis of polymer-copper nanocomposites with tunable parameters by using copper comproportionation reaction[J]. Chemistry of materials, 2010, 22(24): 6616-6623. doi: 10.1021/cm102122c
|
[19] |
LIU Q, GUO Y, CHEN Z, et al. Constructing a novel ternary Fe (III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect[J]. Applied Catalysis B:Environmental, 2016, 183: 231-241. doi: 10.1016/j.apcatb.2015.10.054
|
[20] |
ARSHADI M, SOLEYMANZADEH M, SALVACION J, et al. Nanoscale zero-valent iron (nZVI) supported on sineguelas waste for Pb (II) removal from aqueous solution: kinetics, thermodynamic and mechanism[J]. Journal of Colloid Interface Science, 2014, 426: 241-251. doi: 10.1016/j.jcis.2014.04.014
|
[21] |
BOZOPOULOS A P, KOKKOU S C, RENTZEPERIS P J, et al. Structure of tris (2-pyridinethiolato) antimony III) (TPTA), [Sb(C5H4NS)3][J]. Acta Crystallographica Section C:Crystal Structure Communications, 1984, 40(6): 944-946. doi: 10.1107/S0108270184006351
|
[22] |
SUSANTI V E, MATSJEH S, REDJEKI T, et al. Syntheses and antioxidant activities of some hydroxy dimethoxy chalcone derivatives[J]. Indonesian Journal of Pharmacy, 2014, 25(1): 17. doi: 10.14499/indonesianjpharm25iss1pp17
|
[23] |
LORCA J, HOMS N, PISCINA P. In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts[J]. Journal of Catalysis, 2004, 227(2): 556-560. doi: 10.1016/j.jcat.2004.08.024
|
[24] |
BAIGORRI R, GARCIA J M, GONZALEZ G. Supramolecular association induced by Fe (III) in low molecular weight sodium polyacrylate[J]. Colloids Surfaces A:Physicochemical Engineering Aspects, 2007, 292(2/3): 212-216.
|
[25] |
LIU T, XU Y, ZENG C. Synthesis of Bi2Fe4O9 via PVA sol-gel route[J]. Materials Science Engineering:B, 2011, 176(7): 535-539. doi: 10.1016/j.mseb.2011.01.009
|
[26] |
JIA Z, SHU Y, HUANG R, et al. Enhanced reactivity of nZVI embedded into supermacroporous cryogels for highly efficient Cr (VI) and total Cr removal from aqueous solution[J]. Chemosphere, 2018, 199: 232-242. doi: 10.1016/j.chemosphere.2018.02.021
|
[27] |
XI Y, MALLAVARAPU M, NAIDU R. Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—a SEM, TEM and XPS study[J]. Materials Research Bulletin, 2010, 45(10): 1361-1367. doi: 10.1016/j.materresbull.2010.06.046
|
[28] |
ZHANG Y Y, JIANG H, ZHANG Y, et al. The dispersity-dependent interaction between montmorillonite supported nZVI and Cr (VI) in aqueous solution[J]. Chemical Engineering Journal, 2013, 229: 412-419. doi: 10.1016/j.cej.2013.06.031
|
[29] |
ARIAS M, GARCIA M S, GARCIA L, et al. Binding constants of oxytetracycline to animal feed divalent cations[J]. Journal of Food Engineering, 2007, 78(1): 69-73. doi: 10.1016/j.jfoodeng.2005.09.016
|
[30] |
MATIJEVIC H E. Interactions of metal hydrous oxides with chelating agents: III. Adsorption on spherical colloidal hematite particles[J]. Journal of Colloid and Interface Science, 1983, 92(2): 469-478. doi: 10.1016/0021-9797(83)90168-6
|
[31] |
BALMER M E, SULZBERGER B. Atrazine degradation in irradiated iron/oxalate systems: Effects of pH and oxalate[J]. Environmental Science & Technology, 1999, 33(14): 2418-2424.
|
[32] |
WANG H, YAO H, SUN P, et al. Oxidation of tetracycline antibiotics induced by Fe (III) ions without light irradiation[J]. Chemosphere, 2015, 119: 1255-1261. doi: 10.1016/j.chemosphere.2014.09.098
|
[33] |
FIGUEROA R A, MACKAY A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils[J]. Environmental Science Technology, 2005, 39(17): 6664-6671. doi: 10.1021/es048044l
|
[34] |
ZHANG H, HUANG C H. Reactivity and transformation of antibacterial N-oxides in the presence of manganese oxide[J]. Environmental Science Technology, 2005, 39(2): 593-601. doi: 10.1021/es048753z
|
[35] |
李道荣, 牛振华, 包瑞格, 等. Fenton试剂氧化降解水中的盐酸四环素[J]. 环境工程学报, 2017, 11(4): 2227-2232.
|
[36] |
吴宇炜. 改性零价铁的制备及其处理四环素类和氯霉素类抗生素废水的研究[D]. 济南: 山东大学, 2018.
|
[37] |
CHEN Q, WU S, XIN Y. Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline[J]. Chemical Engineering Journal, 2016, 302: 377-387. doi: 10.1016/j.cej.2016.05.076
|
[38] |
LI Q, ZHAO S, WANG Y. Mechanism of oxytetracycline removal by coconut shell biochar loaded with nano-zero-valent iron[J]. International Journal of Environmental Research Public Health, 2021, 18(24): 13107. doi: 10.3390/ijerph182413107
|
[39] |
LI R, JIA Y, WU J, et al. Photocatalytic degradation and pathway of oxytetracycline in aqueous solution by Fe 2 O 3–TiO 2 nanopowder[J]. Rsc Advances, 2015, 5(51): 40764-40771. doi: 10.1039/C5RA04540A
|
[40] |
LIU Y, HE X, FU Y, et al. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate[J]. Journal of Hazardous Materials, 2016, 305: 229-239. doi: 10.1016/j.jhazmat.2015.11.043
|
[41] |
ZHANG Y, JIANG Q, JIANG S M, et al. One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine[J]. Chemical Engineering Journal, 2021, 420: 129868. doi: 10.1016/j.cej.2021.129868
|
[42] |
TRAN M L, NGUYEN C H, TRAN T T V, et al. One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: Roles of morphology changes and Pt catalysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 130-140. doi: 10.1016/j.jtice.2020.05.001
|