[1] 张全, 文志琼, 张霖, 等. 长链二元酸发酵菌种创制和工艺研究进展[J]. 生物工程学报, 2022, 38(12): 4420-4431.
[2] 陈霖, 曹越, 张仁忠, 等. 某石化企业长链二元酸生产废水的预处理工艺及现场应用[J]. 环境工程学报, 2022, 16(2): 666-673.
[3] 杨健, 黄伟星, 王士芬, 等. 十三碳二元酸发酵有机废水处理研究[J]. 环境污染与防治, 1999, 21(1): 15-18.
[4] 车树刚, 马娜娜, 傅英旬, 等. 生物酶法处理二元酸废水[J]. 环境科技, 2019, 32(4): 36-40.
[5] 许莉, 王明毓, 蔡永益. 电解法处理十三碳二元酸有机废水的研究[J]. 流体机械, 2007, 12(10): 1-4.
[6] 于永辉, 刘守新, 李作臣, 等. 二元酸废水的生物-光催化氧化组合处理技术[J]. 工业水处理, 2004, 12(2): 23-25.
[7] SUKALYAN S, ARKA P. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer[J]. Water Research, 2011, 11: 3318-330.
[8] ZHANG Z B, LI Y, WEI L L. Effect of ferric chloride on the properties of biological sludge in co-precipitation phosphorus removal process[J]. Chinese Journal of Chemical Engineering, 2013, 21(5): 564-568. doi: 10.1016/S1004-9541(13)60511-X
[9] BARCA C, GERENTE C, MEYER D. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe[J]. Water Research, 2012, 46: 2376-2384. doi: 10.1016/j.watres.2012.02.012
[10] 珍珠, 范瑞江. 两级石灰沉淀法在高浓度含氟含磷污水处理中的应用[J]. 化肥设计, 2015, 53(6): 34-37.
[11] 史正学. 浅谈硫酸根的去除方法[J]. 盐业与化工, 2015, 44(7): 27-29.
[12] NORAPAT P, SIWAT S, YOTHIN C, et al. Sulfate removal from lignite coal mine drainage in Thailand using ettringite precipitation[J]. Chemosphere, 2021, 285: 131357. doi: 10.1016/j.chemosphere.2021.131357
[13] WEI X D, ZHEN Z, LU J, et al. Sulfate removal from wastewater using ettringite precipitation: Magnesium ion inhibition and process optimization[J]. Journal of Environmental Management, 2017, 196: 518-526. doi: 10.1016/j.jenvman.2017.03.054
[14] 王海鹰, 彭小玉, 王云燕, 等. 采用复盐法脱除工业废水中的硫酸根[J]. 中南大学学报(自然科学版), 2010, 41(2): 434-439.
[15] 胡文容. 铝盐沉淀法去除酸性矿井水中SO42-的试验研究[J]. 煤矿环境保护, 1996, 12(5): 18-20.
[16] 王玉东, 赵丹, 董延茂, 等. 钙矾石沉淀法去除镁剂脱硫废水中硫酸根离子研究[J]. 工业水处理, 2015, 35(6): 54-57.
[17] 袁辉洲, 柯水洲, 涂家勇, 等. pH对聚合铝形态分布与混凝效果的影响[J]. 工业水处理, 2016, 36(4): 50-53.
[18] DONG R, XIAO B, FANG Y. The theoretical analysis of orthogonal test designs[J]. Journal of Anhui Institute of Architecture, 2004, 12(14): 145-149.
[19] HUI C, JIAN M W, TAO P, et al. Study on the orthogonal yest of al-substituted α-Ni(OH)2 prepared by complexation-precipitation method[J]. Electrochemistry, 2002, 9(12): 122-129.
[20] 周鹏. 盐度冲击对活性污泥系统性能影响的研究[J]. 环境科学与技术, 2011, 34(5): 65-68.
[21] KINCANNON D F, GAUDY A F. Response of biological wastetreatment systems to changes in salt concentration[J]. Biotechnology and Bioengineering, 1968, 10(12): 483-496.
[22] BUMRTT W E. The effect of salinity variations on theactivated sludge process[J]. Water and Sewage Works, 1974, 121(65): 37-38.
[23] UTGUR A. KARGI F. Salt inhibition on biological nutrientremocal from saline wastewater in a sequencing batch reactor[J]. Enzyme and Microbial Technology, 2004, 34(71): 313-318.
[24] BLACK L, BREEN C, YARWOOD J, et al. In situ raman analysis of hydrating C3A and C4AF pastes in presence and absence of sulfate[J]. Advances in Applied Ceramics, 2006, 5(4): 209-216.
[25] BARNETT S J, ADAM C D, JACKSON A R W. Solid solutions between ettringite, Ca6Al2(SO4)3(OH)12·26H2O, and thaumasite, Ca3SiSO4CO3(OH)6·12H2O[J]. Journal of Materials Science, 2000, 35(16): 4109-4114. doi: 10.1023/A:1004898623884
[26] CODY A M, LEE H, CODY R D, et al. The effects of chemical environment on the nucleation, growth, and stability of ettringite[Ca3Al(OH)6]2(SO4)3·26H2O[J]. Cement Concrete Research, 2004, 34(5): 869-881. doi: 10.1016/j.cemconres.2003.10.023
[27] POELLMANN H, KUZEL H J, WENDA R. Solid solution of ettringites part I: Incorporation of OH and CO32– in 3CaO·A12O3·32H2O[J]. Cement Concrete Research, 1990, 20(6): 941-947. doi: 10.1016/0008-8846(90)90057-5
[28] 张文生, 张金山, 叶家元等. 合成条件对钙矾石形貌的影响[J]. 硅酸盐学报, 2017, 9(5): 631-638.
[29] 王趁义, 毕树平. 环境水体中聚合铝形态的分析测试技术研究进展[J]. 分析科学学报, 2004, 20(3): 317-321.
[30] 刘翠, 牟凤利, 王吉秀, 等. 低分子量有机酸对植物吸收和累积重金属的影响综述[J]. 江苏农业科学, 2021, 49(8): 38-43.
[31] 束良佐. 生长介质和局部供磷对白羽扇豆排根形成和柠檬酸分泌的影响[D]. 北京: 中国农业大学, 2005.