[1] 阮挺, 江桂斌. 发现新型环境有机污染物的基本理论与方法 [J]. 中国科学院院刊, 2020, 35(11): 1328-1336. doi: 10.16418/j.issn.1000-3045.20200915004 RUAN T, JIANG G B. Basic theory and analytical methodology for identification of novel environmental organic pollutants [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1328-1336(in Chinese). doi: 10.16418/j.issn.1000-3045.20200915004
[2] 何阳卓, 魏建宏, 周耀渝, 等. 光芬顿和电芬顿在抗生素降解方面的研究及认识 [J]. 当代化工, 2019, 48(2): 395-398. doi: 10.3969/j.issn.1671-0460.2019.02.045 HE Y Z, WEI J H, ZHOU Y Y, et al. Research and knowledge on photo-Fenton and electro-Fenton for the degradation of antibiotics [J]. Contemporary Chemical Industry, 2019, 48(2): 395-398(in Chinese). doi: 10.3969/j.issn.1671-0460.2019.02.045
[3] 王雪纯. 多孔碳催化剂的制备及其对水中有机污染物的降解研究[D]. 秦皇岛: 燕山大学, 2020. WANG X C. Preparation of porous carbon catalyst and its degradation of organic pollutants in water[D]. Qinhuangdao: Yanshan University, 2020 (in Chinese).
[4] 刘丹, 王渝, 阳明利, 等. 过氧化钙材料用于阿莫西林降解性能研究 [J]. 当代化工, 2022, 51(9): 2136-2140. LIU D, WANG Y, YANG M L, et al. Application of calcium peroxide in amoxicillin degradation [J]. Contemporary Chemical Industry, 2022, 51(9): 2136-2140(in Chinese).
[5] SZABÓ L, STEINHARDT M, HOMLOK R, et al. A microbiological assay for assessing the applicability of advanced oxidation processes for eliminating the sublethal effects of antibiotics on selection of resistant bacteria [J]. Environmental Science & Technology Letters, 2017, 4(6): 251-255.
[6] HODGES B C, CATES E L, KIM J H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials [J]. Nature Nanotechnology, 2018, 13(8): 642-650. doi: 10.1038/s41565-018-0216-x
[7] TUŠAR N N, MAUČEC D, RANGUS M, et al. Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP) [J]. Advanced Functional Materials, 2012, 22(4): 820-826. doi: 10.1002/adfm.201102361
[8] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
[9] 王爽, 谢良波, 李轶, 等. 芬顿催化剂的活性氧物种生成机制及其在环境治理中的应用 [J]. 稀有金属, 2022, 46(6): 707-723. WANG S, XIE L B, LI Y, et al. Unraveling reactive oxygen species formation mechanism of Fenton catalyst and its application in environmental treatment [J]. Chinese Journal of Rare Metals, 2022, 46(6): 707-723(in Chinese).
[10] 侯琳萌, 清华, 吉庆华. 类芬顿反应的催化剂、原理与机制研究进展 [J]. 环境化学, 2022, 41(6): 1843-1855. doi: 10.7524/j.issn.0254-6108.2021030301 HOU L M, QING H, JI Q H. Research progress on catalysts, principles and mechanisms of Fenton-like reactions [J]. Environmental Chemistry, 2022, 41(6): 1843-1855(in Chinese). doi: 10.7524/j.issn.0254-6108.2021030301
[11] 厉鹏远, 邱立平, 孙绍芳, 等. 强化传统芬顿/类芬顿氧化效能的研究进展 [J]. 中国给水排水, 2021, 37(10): 34-40. doi: 10.19853/j.zgjsps.1000-4602.2021.10.006 LI P Y, QIU L P, SUN S F, et al. Research progress on enhancing the oxidation efficiency of traditional Fenton/Fenton-like process [J]. China Water & Wastewater, 2021, 37(10): 34-40(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2021.10.006
[12] 吕来, 胡春. 多相芬顿催化水处理技术与原理 [J]. 化学进展, 2017, 29(9): 981-999. doi: 10.7536/PC170552 LYU L, HU C. Heterogeneous Fenton catalytic water treatment technology and mechanism [J]. Progress in Chemistry, 2017, 29(9): 981-999(in Chinese). doi: 10.7536/PC170552
[13] YAO H R, HU S H, WU Y G, et al. The synergetic effects in a Fenton-like system catalyzed by nano zero-valent iron (nZVI) [J]. Polish Journal of Environmental Studies, 2019, 28(4): 2491-2499. doi: 10.15244/pjoes/91939
[14] 邹亚辰, 贾小宁, 冉浪, 等. 零价铁类芬顿法处理含低浓度重金属离子有机废水 [J]. 化学反应工程与工艺, 2021, 37(2): 167-174. ZOU Y C, JIA X N, RAN L, et al. Study on the treatment of organic wastewater containing low concentration heavy metal ions by zero-valent iron Fenton-like process [J]. Chemical Reaction Engineering and Technology, 2021, 37(2): 167-174(in Chinese).
[15] LIANG W, DAI C M, ZHOU X F, et al. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions [J]. PLoS One, 2014, 9(1): e85686. doi: 10.1371/journal.pone.0085686
[16] JOHNSON T L, SCHERER M M, TRATNYEK P G. Kinetics of halogenated organic compound degradation by iron metal [J]. Environmental Science & Technology, 1996, 30(8): 2634-2640.
[17] MINELLA M, BERTINETTI S, HANNA K, et al. Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton) [J]. Environmental Research, 2019, 179: 108750. doi: 10.1016/j.envres.2019.108750
[18] VASAREVIČIUS S, DANILA V, PALIULIS D. Application of stabilized nano zero valent iron particles for immobilization of available Cd2+, Cu2+, Ni2+, and Pb2+ ions in soil [J]. International Journal of Environmental Research, 2019, 13(3): 465-474. doi: 10.1007/s41742-019-00187-8
[19] WANG B, DENG C X, MA W, et al. Modified nanoscale zero-valent iron in persulfate activation for organic pollution remediation: A review [J]. Environmental Science and Pollution Research International, 2021, 28(26): 34229-34247. doi: 10.1007/s11356-021-13972-w
[20] TOSCO T, PETRANGELI PAPINI M, CRUZ VIGGI C, et al. Nanoscale zerovalent iron particles for groundwater remediation: A review [J]. Journal of Cleaner Production, 2014, 77: 10-21. doi: 10.1016/j.jclepro.2013.12.026
[21] QASIM G H, FAREED H, LEE M, et al. Aqueous monomethylmercury degradation using nanoscale zero-valent iron through oxidative demethylation and reductive isolation [J]. Journal of Hazardous Materials, 2022, 435: 128990. doi: 10.1016/j.jhazmat.2022.128990
[22] XUE G, WANG Q, QIAN Y J, et al. Simultaneous removal of aniline, antimony and chromium by ZVI coupled with H2O2: Implication for textile wastewater treatment [J]. Journal of Hazardous Materials, 2019, 368: 840-848. doi: 10.1016/j.jhazmat.2019.02.009
[23] YIRSAW B D, MEGHARAJ M, CHEN Z L, et al. Environmental application and ecological significance of nano-zero valent iron [J]. Journal of Environmental Sciences (China), 2016, 44: 88-98. doi: 10.1016/j.jes.2015.07.016
[24] MIKHAILOV I, KOMAROV S, LEVINA V, et al. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge [J]. Journal of Hazardous Materials, 2017, 321: 557-565. doi: 10.1016/j.jhazmat.2016.09.046
[25] XIA Q, JIANG Z, WANG J, et al. A facile preparation of hierarchical dendritic zero-valent iron for Fenton-like degradation of phenol [J]. Catalysis Communications, 2017, 100: 57-61. doi: 10.1016/j.catcom.2017.06.017
[26] PUIATTI G A, de CARVALHO J P, de MATOS A T, et al. Green synthesis of Fe0 nanoparticles using Eucalyptus grandis leaf extract: Characterization and application for dye degradation by a (Photo)Fenton-like process [J]. Journal of Environmental Management, 2022, 311: 114828. doi: 10.1016/j.jenvman.2022.114828
[27] 王鹏, 王义东, 柳听义. 球磨法制备纳米零价铁的研究进展 [J]. 环境化学, 2021, 40(9): 2924-2933. doi: 10.7524/j.issn.0254-6108.2020050601 WANG P, WANG Y D, LIU T Y. Research progress of preparation of nano zero-valent iron by ball milling [J]. Environmental Chemistry, 2021, 40(9): 2924-2933(in Chinese). doi: 10.7524/j.issn.0254-6108.2020050601
[28] SUN X, NI X, WANG X, et al. Preparation of zero-valent iron-based composite catalyst with red mud and scrap tire as starting materials for Fenton-like degradation of methyl blue [J]. Surfaces and Interfaces, 2022, 31: 102053. doi: 10.1016/j.surfin.2022.102053
[29] 李孟宣, 盛光遥, 何岸飞. 金属催化剂在宽泛pH进行Fenton反应的进展 [J]. 工业水处理, 2021, 41(2): 20-25. LI M X, SHENG G Y, HE A F. Progress of metal catalysts for Fenton reaction at a wide range of pH [J]. Industrial Water Treatment, 2021, 41(2): 20-25(in Chinese).
[30] WU S, YANG S, LIU S, et al. Enhanced reactivity of zero-valent aluminum with ball milling for phenol oxidative degradation [J]. Journal of Colloid and Interface Science, 2020, 560: 260-272. doi: 10.1016/j.jcis.2019.10.075
[31] WANG N. FeCoNiMnCuTi high entropy amorphous alloys and M50Ti50 (M = Fe, Cu, FeCoNiMnCu) amorphous alloys: Novel and efficient catalysts for heterogeneous photo-Fenton decomposition of Rhodamine B [J]. Surfaces and Interfaces, 2022, 33: 102265. doi: 10.1016/j.surfin.2022.102265
[32] SHAH N S, KHAN J A, SAYED M, et al. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent Manganese catalyzed S2O82− [J]. Chemical Engineering Journal, 2019, 356: 199-209. doi: 10.1016/j.cej.2018.09.009
[33] ZHOU G, ZHOU R, LIU Y, et al. Efficient degradation of sulfamethoxazole using peracetic acid activated by zero-valent cobalt [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107783. doi: 10.1016/j.jece.2022.107783
[34] LI Z L, LYU J C, GE M. Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation [J]. Journal of Materials Science, 2018, 53(21): 15081-15095. doi: 10.1007/s10853-018-2699-0
[35] YU C, HUANG R, XIE Y, et al. In-situ synthesis of N-doped biochar encapsulated Cu(0) nanoparticles with excellent Fenton-like catalytic performance and good environmental stability [J]. Separation and Purification Technology, 2022, 295: 121334. doi: 10.1016/j.seppur.2022.121334
[36] SUN B F, LI H L, LI X Y, et al. Degradation of organic dyes over Fenton-like Cu2O-Cu/C catalysts [J]. Industrial & Engineering Chemistry Research, 2018, 57(42): 14011-14021.
[37] DONG X, DUAN X, SUN Z, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis [J]. Applied Catalysis B:Environmental, 2020, 261: 118214. doi: 10.1016/j.apcatb.2019.118214
[38] LI X N, HUANG X, XI S B, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis [J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. doi: 10.1021/jacs.8b05992
[39] 李君超, 蒋进元, 张伟, 等. 纳米Fe/Co合金类Fenton降解盐酸四环素及影响因素 [J]. 环境科学研究, 2018, 31(4): 757-764. doi: 10.13198/j.issn.1001-6929.2018.01.10 LI J C, JIANG J Y, ZHANG W, et al. Oxidative degradation of tetracycline hydrochloride using nano Fe/Co alloy and H2O2 under Fenton conditions [J]. Research of Environmental Sciences, 2018, 31(4): 757-764(in Chinese). doi: 10.13198/j.issn.1001-6929.2018.01.10
[40] 王斌, 杨月红, 阳耀熙. 钒掺杂铜基、铁基双金属催化剂的非均相芬顿氧化性能 [J]. 化工进展, 2021, 40(12): 6705-6713. doi: 10.16085/j.issn.1000-6613.2021-0082 WANG B, YANG Y H, YANG Y X. Heterogeneous Fenton oxidation performance of vanadium-doped copper-based and iron-based bimetallic catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6705-6713(in Chinese). doi: 10.16085/j.issn.1000-6613.2021-0082
[41] WAN Z, HU J, WANG J. Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process [J]. Journal of Environmental Management, 2016, 182: 284-291. doi: 10.1016/j.jenvman.2016.07.088
[42] XIA Q, ZHANG D, YAO Z, et al. Investigation of Cu heteroatoms and Cu clusters in Fe-Cu alloy and their special effect mechanisms on the Fenton-like catalytic activity and reusability [J]. Applied Catalysis B:Environmental, 2021, 299: 120662. doi: 10.1016/j.apcatb.2021.120662
[43] XIA Q X, ZHANG D J, YAO Z P, et al. Revealing the enhancing mechanisms of Fe-Cu bimetallic catalysts for the Fenton-like degradation of phenol [J]. Chemosphere, 2022, 289: 133195. doi: 10.1016/j.chemosphere.2021.133195
[44] OUYANG Q, LIAN J T, LU B Z, et al. Effects and mechanisms of lincomycin degradation by six promoters in the mZVI/H2O2 systems [J]. Chemical Engineering Journal, 2020, 387: 123417. doi: 10.1016/j.cej.2019.123417
[45] YANG J, ZHANG X, TANG J, et al. Removal efficiency and mechanism of refractory organic matter from landfill leachate MBR effluent by the MoS2-enhanced Fe0/H2O2 system [J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108391. doi: 10.1016/j.jece.2022.108391
[46] CLARIZIA L, RUSSO D, Di SOMMA I, et al. Homogeneous photo-Fenton processes at near neutral pH: A review [J]. Applied Catalysis B:Environmental, 2017, 209: 358-371. doi: 10.1016/j.apcatb.2017.03.011
[47] 彭媛, 赵朋飞. 响应曲面法优化感应电芬顿处理活性红X-3B废水 [J]. 当代化工, 2022, 51(5): 1014-1019. doi: 10.3969/j.issn.1671-0460.2022.05.002 PENG Y, ZHAO P F. Optimization of induction electro-Fenton for treating reactive red X-3B wastewater by response surface method [J]. Contemporary Chemical Industry, 2022, 51(5): 1014-1019(in Chinese). doi: 10.3969/j.issn.1671-0460.2022.05.002
[48] 左继红, 吴冰. 微波耦合芬顿降解含酚废水反应器及工艺研究 [J]. 当代化工, 2022, 51(8): 2012-2016. doi: 10.3969/j.issn.1671-0460.2022.08.053 ZUO J H, WU B. Microwave coupled Fenton reactor for degradation of phenol wastewater and its process [J]. Contemporary Chemical Industry, 2022, 51(8): 2012-2016(in Chinese). doi: 10.3969/j.issn.1671-0460.2022.08.053
[49] 李光明, 邱珊, 马放. 均相与非均相超声-芬顿催化降解水中罗丹明B [J]. 水处理技术, 2020, 46(5): 19-23. doi: 10.16796/j.cnki.1000-3770.2020.05.004 LI G M, QIU S, MA F. Homogeneous and heterogeneous ultrasound-Fenton for degradation of RhB in water [J]. Technology of Water Treatment, 2020, 46(5): 19-23(in Chinese). doi: 10.16796/j.cnki.1000-3770.2020.05.004
[50] LIU J, WU J Y, KANG C L, et al. Photo-Fenton effect of 4-chlorophenol in ice [J]. Journal of Hazardous Materials, 2013, 261: 500-511. doi: 10.1016/j.jhazmat.2013.07.040
[51] CHEN Y P, YANG L M, PAUL CHEN J, et al. Electrospun spongy zero-valent iron as excellent electro-Fenton catalyst for enhanced sulfathiazole removal by a combination of adsorption and electro-catalytic oxidation [J]. Journal of Hazardous Materials, 2019, 371: 576-585. doi: 10.1016/j.jhazmat.2019.03.043
[52] SUN M, ZOU L, WANG P, et al. Nano valent zero iron (NZVI) immobilized CNTs hollow fiber membrane for flow-through heterogeneous Fenton process [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107806. doi: 10.1016/j.jece.2022.107806
[53] XIA Q X, YAO Z P, ZHANG D J, et al. Rational synthesis of micronano dendritic ZVI@Fe3O4 modified with carbon quantum dots and oxygen vacancies for accelerating Fenton-like oxidation [J]. Science of the Total Environment, 2019, 671: 1056-1065. doi: 10.1016/j.scitotenv.2019.03.435
[54] WANG J, LIU C, FENG J, et al. MOFs derived Co/Cu bimetallic nanoparticles embedded in graphitized carbon nanocubes as efficient Fenton catalysts [J]. Journal of Hazardous Materials, 2020, 394: 122567. doi: 10.1016/j.jhazmat.2020.122567
[55] NIU L, ZHAO X, TANG Z, et al. One-Step mechanochemical preparation of magnetic covalent organic framework for the degradation of organic pollutants by heterogeneous and homogeneous Fenton-like synergistic reaction [J]. Separation and Purification Technology, 2022, 294: 121145. doi: 10.1016/j.seppur.2022.121145
[56] CHEN X, TONG X, GAO J B, et al. Simultaneous nitrite resourcing and mercury ion removal using MXene-anchored goethite heterogeneous Fenton composite [J]. Environmental Science & Technology, 2022, 56(7): 4542-4552.