[1] |
CHEN R, KONG Y. A comprehensive review of greenhouse gas based on subject categories [J]. Science of the Total Environment, 2023, 866: 161314. doi: 10.1016/j.scitotenv.2022.161314
|
[2] |
YUAN H M, LIU J G, ZHANG X H, et al. Recent advances in membrane-based materials for desalination and gas separation [J]. Journal of Cleaner Production, 2023, 387: 135845. doi: 10.1016/j.jclepro.2023.135845
|
[3] |
SHEN J, LIU G Z, JI Y F, et al. 2D MXene nanofilms with tunable gas transport channels [J]. Advanced Functional Materials, 2018, 28(31): 1801511. doi: 10.1002/adfm.201801511
|
[4] |
LIU Z M, CHAKRABORTY A, HE T B, et al. Technoeconomic and environmental optimization of combined heat and power systems with renewable integration for chemical plants [J]. Applied Thermal Engineering, 2023, 219: 119474. doi: 10.1016/j.applthermaleng.2022.119474
|
[5] |
ZHANG J F, LIN H F, LI S G, et al. Accurate gas extraction(AGE) under the dual-carbon background: Green low-carbon development pathway and prospect [J]. Journal of Cleaner Production, 2022, 377: 134372. doi: 10.1016/j.jclepro.2022.134372
|
[6] |
曾诗鸿, 李根, 翁智雄, 等. 面向碳达峰与碳中和目标的中国能源转型路径研究 [J]. 环境保护, 2021, 49(16): 26-29. doi: 10.14026/j.cnki.0253-9705.2021.16.008
ZENG S H, LI G, WENG Z X, et al. Research on China’s energy transition path towards the goals of carbon peak and carbon neutrality [J]. Environmental Protection, 2021, 49(16): 26-29(in Chinese). doi: 10.14026/j.cnki.0253-9705.2021.16.008
|
[7] |
GÜR T M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies [J]. Progress in Energy and Combustion Science, 2022, 89: 100965. doi: 10.1016/j.pecs.2021.100965
|
[8] |
WANG S F, LI X Q, WU H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations [J]. Energy & Environmental Science, 2016, 9(6): 1863-1890.
|
[9] |
DUBEY A, ARORA A. Advancements in carbon capture technologies: A review [J]. Journal of Cleaner Production, 2022, 373: 133932. doi: 10.1016/j.jclepro.2022.133932
|
[10] |
WANG H L, HE S F, QIN X D, et al. Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes [J]. Journal of the American Chemical Society, 2018, 140(49): 17203-17210. doi: 10.1021/jacs.8b10138
|
[11] |
ZHAO C Y, HUSSAIN W, CHLIB ALKAABY H H, et al. Polymeric nanocomposite membranes for gas separation: Performance, applications, restrictions and future perspectives [J]. Case Studies in Thermal Engineering, 2022, 38: 102323. doi: 10.1016/j.csite.2022.102323
|
[12] |
HUANG Z H, YIN C, CORRADO T, et al. Microporous pentiptycene-based polymers with heterocyclic rings for high-performance gas separation membranes [J]. Chemistry of Materials, 2022, 34(6): 2730-2742. doi: 10.1021/acs.chemmater.1c04212
|
[13] |
ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes [J]. Journal of Membrane Science, 1991, 62(2): 165-185. doi: 10.1016/0376-7388(91)80060-J
|
[14] |
GUO M, ZHANG Y W, XU R, et al. Ultrahigh permeation of CO2 capture using composite organosilica membranes [J]. Separation and Purification Technology, 2022, 282: 120061. doi: 10.1016/j.seppur.2021.120061
|
[15] |
ZHU B, LIU J D, WANG S F, et al. Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation [J]. Journal of Membrane Science, 2019, 572: 650-657. doi: 10.1016/j.memsci.2018.11.039
|
[16] |
ISFAHANI A P, ARABI SHAMSABADI A, SOROUSH M. MXenes and other two-dimensional materials for membrane gas separation: Progress, challenges, and potential of MXene-based membranes [J]. Industrial & Engineering Chemistry Research, 2023, 62(5): 2309-2328.
|
[17] |
ZHU J Y, HOU J W, ULIANA A, et al. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes [J]. Journal of Materials Chemistry A, 2018, 6(9): 3773-3792. doi: 10.1039/C7TA10814A
|
[18] |
ZHU W F, QIN Y, WANG Z M, et al. Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation [J]. Journal of Energy Chemistry, 2019, 31: 1-10. doi: 10.1016/j.jechem.2018.04.013
|
[19] |
GAO L F, LI C, HUANG W C, et al. MXene/polymer membranes: Synthesis, properties, and emerging applications [J]. Chemistry of Materials, 2020, 32(5): 1703-1747. doi: 10.1021/acs.chemmater.9b04408
|
[20] |
JIA Y Y, SHI F, LI H Y, et al. Facile ionization of the nanochannels of lamellar membranes for stable ionic liquid immobilization and efficient CO2 separation [J]. ACS Nano, 2022, 16(9): 14379-14389. doi: 10.1021/acsnano.2c04670
|
[21] |
FAN H W, PENG M H, STRAUSS I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation [J]. Nature Communications, 2021, 12(1): 1-10. doi: 10.1038/s41467-020-20314-w
|
[22] |
LI J, ZHOU X, WANG J, et al. Two-dimensional covalent organic frameworks (COFs) for membrane separation: A mini review [J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15394-15406.
|
[23] |
YUAN H Y, LIU P F, YANG H G. Peculiar double-layered transition metal hydroxide nanosheets [J]. Matter, 2022, 5(4): 1063-1065. doi: 10.1016/j.matt.2022.03.007
|
[24] |
WANG D, WANG Z G, WANG L, et al. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation [J]. Nanoscale, 2015, 7(42): 17649-17652. doi: 10.1039/C5NR06321C
|
[25] |
NIU Z H, LUO W J, MU P, et al. Nanoconfined CO2-philic ionic liquid in laminated g-C3N4 membrane for the highly efficient separation of CO2 [J]. Separation and Purification Technology, 2022, 297: 121513. doi: 10.1016/j.seppur.2022.121513
|
[26] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2): 1-17.
|
[27] |
XU J S, YOU J H, WANG L, et al. MXenes serving aqueous supercapacitors: Preparation, energy storage mechanism and electrochemical performance enhancement [J]. Sustainable Materials and Technologies, 2022, 33: e00490. doi: 10.1016/j.susmat.2022.e00490
|
[28] |
LIU H G, WANG Z, WANG J, et al. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications [J]. Nanoscale, 2022, 14(26): 9218-9247. doi: 10.1039/D2NR02224A
|
[29] |
LI R S, GAO Q, XING H N, et al. Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity [J]. Carbon, 2021, 183: 301-312. doi: 10.1016/j.carbon.2021.07.029
|
[30] |
LI R H, FU X F, LIU G Z, et al. Room-temperature in situ synthesis of MOF@MXene membrane for efficient hydrogen purification [J]. Journal of Membrane Science, 2022, 664: 121097. doi: 10.1016/j.memsci.2022.121097
|
[31] |
SUN Y Q, LI S L, ZHUANG Y X, et al. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection [J]. Journal of Membrane Science, 2019, 591: 117350. doi: 10.1016/j.memsci.2019.117350
|
[32] |
WU X L, CUI X L, WU W J, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes [J]. Angewandte Chemie (International Ed. in English), 2019, 58(51): 18524-18529. doi: 10.1002/anie.201912570
|
[33] |
DING L, XIAO D, LU Z, et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting [J]. Angewandte Chemie International Edition, 2020, 59(22): 8720-8726. doi: 10.1002/anie.201915993
|
[34] |
KARAHAN H E, GOH K, ZHANG C J, et al. MXene materials for designing advanced separation membranes [J]. Advanced Materials, 2020, 32(29): e1906697. doi: 10.1002/adma.201906697
|
[35] |
ZHANG Y M, CHEN X S, LUO C J, et al. Column-to-beam structure house inspired MXene-based integrated membrane with stable interlayer spacing for water purification [J]. Advanced Functional Materials, 2022, 32(22): 2111660. doi: 10.1002/adfm.202111660
|
[36] |
DING L, WEI Y Y, WANG Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks [J]. Angewandte Chemie (International Ed. in English), 2017, 56(7): 1825-1829. doi: 10.1002/anie.201609306
|
[37] |
SY S, JIANG G P, ZHANG J, et al. A near-isotropic proton-conducting porous graphene oxide membrane [J]. ACS Nano, 2020, 14(11): 14947-14959. doi: 10.1021/acsnano.0c04533
|
[38] |
HOPE M A, FORSE A C, GRIFFITH K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene [J]. Physical Chemistry Chemical Physics:PCCP, 2016, 18(7): 5099-5102. doi: 10.1039/C6CP00330C
|
[39] |
RIAZI H, ANAYEE M, HANTANASIRISAKUL K, et al. Surface modification of a MXene by an aminosilane coupling agent [J]. Advanced Materials Interfaces, 2020, 7(6): 1902008. doi: 10.1002/admi.201902008
|
[40] |
HAO L, ZHANG H Q, WU X L, et al. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport [J]. Composites Part A:Applied Science and Manufacturing, 2017, 100: 139-149. doi: 10.1016/j.compositesa.2017.05.003
|
[41] |
WANG K, ZHOU Y F, XU W T, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets [J]. Ceramics International, 2016, 42(7): 8419-8424. doi: 10.1016/j.ceramint.2016.02.059
|
[42] |
XIONG D B, LI X F, BAI Z M, et al. Recent advances in layered TiC2Tx MXene for electrochemical energy storage [J]. Small, 2018, 14(17): e1703419. doi: 10.1002/smll.201703419
|
[43] |
BHARGAVA REDDY M S, KAILASA S, MARUPALLI B C G, et al. A family of 2D-MXenes: Synthesis, properties, and gas sensing applications [J]. ACS Sensors, 2022, 7(8): 2132-2163. doi: 10.1021/acssensors.2c01046
|
[44] |
MALESKI K, REN C E, ZHAO M Q, et al. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes [J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24491-24498.
|
[45] |
WANG Y X, YUE Y, CHENG F, et al. Ti3C2Tx MXene-based flexible piezoresistive physical sensors [J]. ACS Nano, 2022, 16(2): 1734-1758. doi: 10.1021/acsnano.1c09925
|
[46] |
BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes) [J]. Nanotechnology, 2015, 26(26): 265705. doi: 10.1088/0957-4484/26/26/265705
|
[47] |
WU X L, HAO L, ZHANG J K, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system [J]. Journal of Membrane Science, 2016, 515: 175-188. doi: 10.1016/j.memsci.2016.05.048
|
[48] |
SEIDI F, ARABI SHAMSABADI A, DADASHI FIROUZJAEI M, et al. MXenes antibacterial properties and applications: A review and perspective[J]. Small (Weinheim an Der Bergstrasse, Germany), 2023: e2206716.
|
[49] |
PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets [J]. Journal of Materials Chemistry A, 2018, 6(8): 3522-3533. doi: 10.1039/C7TA10888E
|
[50] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
|
[51] |
ZHOU J, ZHA X H, ZHOU X B, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide [J]. ACS Nano, 2017, 11(4): 3841-3850. doi: 10.1021/acsnano.7b00030
|
[52] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides [J]. ACS Nano, 2012, 6(2): 1322-1331. doi: 10.1021/nn204153h
|
[53] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chemistry of Materials, 2017, 29(18): 7633-7644. doi: 10.1021/acs.chemmater.7b02847
|
[54] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance [J]. Nature, 2014, 516(7529): 78-81. doi: 10.1038/nature13970
|
[55] |
HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene) [J]. Advanced Functional Materials, 2016, 26(18): 3118-3127. doi: 10.1002/adfm.201505328
|
[56] |
LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. MXene materials: Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes [J]. Advanced Electronic Materials, 2016, 2(12): 1600255. doi: 10.1002/aelm.201600255
|
[57] |
SHUCK C E, VENTURA-MARTINEZ K, GOAD A, et al. Safe synthesis of MAX and MXene: Guidelines to reduce risk during synthesis [J]. ACS Chemical Health & Safety, 2021, 28(5): 326-338.
|
[58] |
LI T F, YAO L L, LIU Q L, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment [J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. doi: 10.1002/anie.201800887
|
[59] |
ZOU G D, GUO J X, LIU X Y, et al. Hydrogenated core–shell MAX@K2Ti8O17 pseudocapacitance with ultrafast sodium storage and long-term cycling [J]. Advanced Energy Materials, 2017, 7(18): 1700700. doi: 10.1002/aenm.201700700
|
[60] |
MESHKIAN R, NÄSLUND L Å, HALIM J, et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C [J]. Scripta Materialia, 2015, 108: 147-150. doi: 10.1016/j.scriptamat.2015.07.003
|
[61] |
URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) [J]. Nanoscale, 2016, 8(22): 11385-11391. doi: 10.1039/C6NR02253G
|
[62] |
SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate [J]. ACS Nano, 2017, 11(9): 8892-8900. doi: 10.1021/acsnano.7b03129
|
[63] |
LI Y B, SHAO H, LIN Z F, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte [J]. Nature Materials, 2020, 19(8): 894-899. doi: 10.1038/s41563-020-0657-0
|
[64] |
LUKATSKAYA M R, HALIM J, DYATKIN B, et al. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases [J]. Angewandte Chemie (International Ed. in English), 2014, 53(19): 4877-4880. doi: 10.1002/anie.201402513
|
[65] |
ZHAO M Q, SEDRAN M, LING Z, et al. Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC [J]. Angewandte Chemie (International Ed. in English), 2015, 54(16): 4810-4814. doi: 10.1002/anie.201500110
|
[66] |
SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution [J]. Journal of Materials Chemistry A, 2017, 5(41): 21663-21668. doi: 10.1039/C7TA05574A
|
[67] |
XUE N, LI X S, ZHANG M Q, et al. Chemical-combined ball-milling synthesis of fluorine-free porous MXene for high-performance lithium ion batteries [J]. ACS Applied Energy Materials, 2020, 3(10): 10234-10241. doi: 10.1021/acsaem.0c02081
|
[68] |
MURALI G, RAWAL J, MODIGUNTA J K R, et al. A review on MXenes: New-generation 2D materials for supercapacitors [J]. Sustainable Energy & Fuels, 2021, 5(22): 5672-5693.
|
[69] |
GHAZALY A E, AHMED H, REZK A R, et al. Ultrafast, one-step, salt-solution-based acoustic synthesis of Ti3C2 MXene [J]. ACS Nano, 2021, 15(3): 4287-4293. doi: 10.1021/acsnano.0c07242
|
[70] |
SIDHIKKU KANDATH VALAPPIL R, GHASEM N, AL-MARZOUQI M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review [J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 103-129. doi: 10.1016/j.jiec.2021.03.030
|
[71] |
CARREON M A. Microporous crystalline molecular sieve membranes for molecular gas separations: What is next? [J]. ACS Materials Letters, 2022, 4(5): 868-873. doi: 10.1021/acsmaterialslett.2c00102
|
[72] |
DING L, WEI Y Y, LI L B, et al. MXene molecular sieving membranes for highly efficient gas separation [J]. Nature Communications, 2018, 9(1): 1-7. doi: 10.1038/s41467-017-02088-w
|
[73] |
JAVAID A. Membranes for solubility-based gas separation applications [J]. Chemical Engineering Journal, 2005, 112(1/2/3): 219-226.
|
[74] |
WIJMANS J G, BAKER R W. The solution-diffusion model: A review [J]. Journal of Membrane Science, 1995, 107(1/2): 1-21.
|
[75] |
LOUDON C, McCULLOH K. Application of the Hagen—Poiseuille equation to fluid feeding through short tubes [J]. Annals of the Entomological Society of America, 1999, 92(1): 153-158. doi: 10.1093/aesa/92.1.153
|
[76] |
UHLHORN R J R, KEIZER K, BURGGRAAF A J. Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation [J]. Journal of Membrane Science, 1992, 66(2/3): 259-269.
|
[77] |
孙成珍, 罗东, 白博峰. 二维材料气体分离膜及其应用研究进展 [J]. 科学通报, 2023, 68(1): 53-71. doi: 10.1360/TB-2022-0503
SUN C Z, LUO D, BAI B F. Two-dimensional material membranes for gas separation and their applications [J]. Chinese Science Bulletin, 2023, 68(1): 53-71(in Chinese). doi: 10.1360/TB-2022-0503
|
[78] |
THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
|
[79] |
LU Z, WU Y, DING L, et al. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation [J]. Angewandte Chemie (International Ed. in English), 2021, 60(41): 22265-22269. doi: 10.1002/anie.202108801
|
[80] |
FAN Y Y, WEI L Y, MENG X X, et al. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving [J]. Journal of Membrane Science, 2019, 569: 117-123. doi: 10.1016/j.memsci.2018.10.017
|
[81] |
LUO W J, NIU Z H, MU P, et al. Pebax and CMC@MXene-based mixed matrix membrane with high mechanical strength for the highly efficient capture of CO2 [J]. Macromolecules, 2022, 55(21): 9851-9859. doi: 10.1021/acs.macromol.2c01532
|
[82] |
SHAMSABADI A A, ISFAHANI A P, SALESTAN S K, et al. Pushing rubbery polymer membranes to be economic for CO2 separation: Embedment with Ti3C2Tx MXene nanosheets [J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3984-3992.
|
[83] |
LIU G Z, CHENG L, CHEN G N, et al. Pebax-based membrane filled with two-dimensional mxene nanosheets for efficient CO2 capture [J]. Chemistry, an Asian Journal, 2020, 15(15): 2364-2370. doi: 10.1002/asia.201901433
|