[1] ZHU X D, WANG Y J, SUN R J, et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2 [J]. Chemosphere, 2013, 92(8): 925-932. doi: 10.1016/j.chemosphere.2013.02.066
[2] WU S Q, HU H Y, LIN Y, et al. Visible light photocatalytic degradation of tetracycline over TiO2 [J]. Chemical Engineering Journal, 2019, 382: 122842.
[3] SAEED M, MUNEER M, HAQ A U, et al. Photocatalysis: An effective tool for photodegradation of dyes-a review [J]. Environmental Science and Pollution Research International, 2022, 29(1): 293-311. doi: 10.1007/s11356-021-16389-7
[4] WANG X N, SAYED M, RUZIMURADOV O, et al. A review of step-scheme photocatalysts [J]. Applied Materials Today, 2022, 29: 101609. doi: 10.1016/j.apmt.2022.101609
[5] 陈丽华, 杜建斌, 王茀学, 等. ZIF-8复合物光催化去除水体污染物 [J]. 环境化学, 2022, 41(7): 2149-2161. doi: 10.7524/j.issn.0254-6108.2021031401 CHEN L H, DU J B, WANG F X, et al. Photocatalytic removal of water pollutants in ZIF-8 composites [J]. Environmental Chemistry, 2022, 41(7): 2149-2161(in Chinese). doi: 10.7524/j.issn.0254-6108.2021031401
[6] MA X J, TANG X J, HU Z Z, et al. Oxygen vacancies assist a facet effect to modulate the microstructure of TiO2 for efficient photocatalytic O2 activation [J]. Nanoscale, 2023, 15(2): 768-778. doi: 10.1039/D2NR05849A
[7] WEI X J, AKBAR M U, RAZA A, et al. A review on bismuth oxyhalide based materials for photocatalysis [J]. Nanoscale Advances, 2021, 3(12): 3353-3372. doi: 10.1039/D1NA00223F
[8] 饶志, 顾彦, 黄春迎, 等. FeVO4可见光光催化降解有毒有机污染物 [J]. 环境化学, 2013, 32(4): 564-571. doi: 10.7524/j.issn.0254-6108.2013.04.005 RAO Z, GU Y, HUANG C Y, et al. Photodegradation of toxic organic pollutants by FeVO4 under visible light irradiation [J]. Environmental Chemistry, 2013, 32(4): 564-571(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.04.005
[9] SHIRAISHI F, IWANAGA M, KITAGAWA N, et al. Enhancing the photocatalytic decomposition of acetaldehyde in air by immobilized titanium dioxide [J]. Journal of Chemical Technology & Biotechnology, 2020, 95(7): 2034-2044.
[10] MORETTI E, CATTARUZZA E, FLORA C, et al. Photocatalytic performance of Cu-doped titania thin films under UV light irradiation [J]. Applied Surface Science, 2021, 553: 149535. doi: 10.1016/j.apsusc.2021.149535
[11] 周乐乐, 沈知章, 唐灵铃, 等. Sn掺杂强化TiO2在湿空气中光催化降解甲苯的性能 [J]. 环境化学, 2022, 41(7): 2404-2413. doi: 10.7524/j.issn.0254-6108.2021031205 ZHOU L L, SHEN Z Z, TANG L L, et al. Sn doping enhanced the photocatalytic degradation of toluene by TiO2 in humid air [J]. Environmental Chemistry, 2022, 41(7): 2404-2413(in Chinese). doi: 10.7524/j.issn.0254-6108.2021031205
[12] SERWICKA E M. Titania-clay mineral composites for environmental catalysis and photocatalysis [J]. Catalysts, 2021, 11(9): 1087. doi: 10.3390/catal11091087
[13] BUTBUREE T, KOTCHASARN P, HIRUNSIT P, et al. New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance [J]. Journal of Materials Chemistry A, 2019, 7(14): 8156-8166. doi: 10.1039/C8TA11475G
[14] ZHANG F, FENG G, HU M Y, et al. Liquid-plasma hydrogenated synthesis of gray titania with engineered surface defects and superior photocatalytic activity [J]. Nanomaterials (Basel, Switzerland), 2020, 10(2): 342.
[15] CHEN H P, CHEN N, FENG C P, et al. Synthesis of a novel narrow-band-gap iron(II, III) oxide/titania/silver silicate nanocomposite as a highly efficient and stable visible light-driven photocatalyst [J]. Journal of Colloid and Interface Science, 2018, 515: 119-128. doi: 10.1016/j.jcis.2018.01.022
[16] KUMAR S, KARTHIKEYAN S, LEE A F. G-C3N4-based nanomaterials for visible light-driven photocatalysis [J]. Catalysts, 2018, 8(2): 74. doi: 10.3390/catal8020074
[17] GÜNDOĞMUŞ P, PARK J, ÖZTÜRK A. Preparation and photocatalytic activity of g-C3N4/TiO2 heterojunctions under solar light illumination [J]. Ceramics International, 2020, 46(13): 21431-21438. doi: 10.1016/j.ceramint.2020.05.241
[18] 马晓明, 信帅帅, 张春蕾, 等. g-C3N4/TiO2纳米管阵列光阳极的制备及其光电催化降解邻氯硝基苯 [J]. 环境科学学报, 2022, 42(8): 166-178. MA X M, XIN S S, ZHANG C L, et al. Preparation of g-C3N4/TiO2 nanotube arrays photoanode for photoelectrocatalytic degradation of o-chloronitrobenzene [J]. Acta Scientiae Circumstantiae, 2022, 42(8): 166-178(in Chinese).
[19] 郭盛祺, 马同宇, 杨波, 等. 机械混合法制备TiO2/g-C3N4复合材料及其光催化降解双酚A的性能 [J]. 环境化学, 2022, 41(4): 1425-1434. doi: 10.7524/j.issn.0254-6108.2020121201 GUO S Q, MA T Y, YANG B, et al. Preparation of TiO2/g-C3N4 composite material by mechanical mixing method and study on its photocatalytic degradation performance of bisphenol A [J]. Environmental Chemistry, 2022, 41(4): 1425-1434(in Chinese). doi: 10.7524/j.issn.0254-6108.2020121201
[20] GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges [J]. Advanced Materials, 2019, 31(50): 1901997. doi: 10.1002/adma.201901997
[21] LIU Y L, WU S S, LIU J, et al. Synthesis of g-C3N4/TiO2 nanostructures for enhanced photocatalytic reduction of U(VI) in water [J]. RSC Advances, 2021, 11(8): 4810-4817. doi: 10.1039/D0RA10694A
[22] SAADATI F, KERAMATI N, GHAZI M M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review [J]. Critical Reviews in Environmental Science and Technology, 2016, 46(8): 757-782. doi: 10.1080/10643389.2016.1159093
[23] 张茜, 梁海欧, 李春萍, 等. g-C3N4/CeO2异质结材料的制备及其光催化性能的研究 [J]. 化学通报, 2022, 85(12): 1475-1482. ZHANG X, LIANG H O, LI C P, et al. Preparation and photocatalytic properties of g-C3N4/CeO2 heterojunction [J]. Chemistry, 2022, 85(12): 1475-1482(in Chinese).
[24] LINCHO J, ZALESKA-MEDYNSKA A, MARTINS R C, et al. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview [J]. The Science of the Total Environment, 2022, 837: 155776. doi: 10.1016/j.scitotenv.2022.155776
[25] LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts [J]. Advanced Materials, 2017, 29(20): 1601694. doi: 10.1002/adma.201601694
[26] Di LIBERTO G, CIPRIANO L A, TOSONI S, et al. Rational design of semiconductor heterojunctions for photocatalysis [J]. Chemistry – A European Journal, 2021, 27(53): 13306-13317. doi: 10.1002/chem.202101764