[1] 刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展 [J]. 环境工程, 2020, 38(5): 36-42. doi: 10.13205/j.hjgc.202005007 LIU P X, WANG X, FENG L. Occurrences, resources and risk of antibiotics in aquatic environment: A review [J]. Environmental Engineering, 2020, 38(5): 36-42(in Chinese). doi: 10.13205/j.hjgc.202005007
[2] 齐亚兵. 活化过硫酸盐高级氧化法降解抗生素的研究进展 [J]. 化工进展, 2022, 41(12): 6627-6643. QI Y B. Research progress on degradation of antibiotics by activated persulfate advanced oxidation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6627-6643(in Chinese).
[3] DAI Y L, YAO Y, LI M H, et al. Carbon nanotube filter functionalized with MIL-101 (Fe) for enhanced flow-through electro-Fenton [J]. Environmental Research, 2022, 204: 112117. doi: 10.1016/j.envres.2021.112117
[4] 赵玲, 刘恒恒, 胡晴, 等. 金属有机骨架材料 MOF-5 催化吸附 SO2 [J]. 环境化学, 2017, 36(9): 1914-1922. doi: 10.7524/j.issn.0254-6108.2016110901 ZHAO L, LIU H H, HU Q, et al. Synthesis of MOF-5 catalysts and their catalytic oxidation of sulfur dioxide [J]. Environmental Chemistry, 2017, 36(9): 1914-1922(in Chinese). doi: 10.7524/j.issn.0254-6108.2016110901
[5] 李小娟, 廖凤珍, 叶兰妹, 等. 金属有机骨架及其衍生材料活化过硫酸盐在水处理中的应用进展 [J]. 化工进展, 2019, 38(10): 4712-4721. doi: 10.16085/j.issn.1000-6613.2019-0163 LI X J, LIAO F Z, YE L M, et al. Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4712-4721(in Chinese). doi: 10.16085/j.issn.1000-6613.2019-0163
[6] LIU D, GU W Y, ZHOU L, et al. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation [J]. Chemical Engineering Journal, 2022, 427: 131503. doi: 10.1016/j.cej.2021.131503
[7] 穆寄林, 徐婕, 赵瑨云, 等. ZIF-8的制备及其光催化降解活性红研究 [J]. 化工新型材料, 2022, 50(8): 219-222. MU J L, XU J, ZHAO J Y, et al. Fabrication of ZIF-8 and its photocatalytic degradation of reactive red [J]. New Chemical Materials, 2022, 50(8): 219-222(in Chinese).
[8] 陈丽华, 杜建斌, 王茀学, 等. ZIF-8 复合物光催化去除水体污染物 [J]. 环境化学, 2022, 41(7): 2149-2161. doi: 10.7524/j.issn.0254-6108.2021031401 CHEN L H, DU J B, WANG F X, et al. Photocatalytic removal of water pollutants in ZIF-8 composites [J]. Environmental Chemistry, 2022, 41(7): 2149-2161(in Chinese). doi: 10.7524/j.issn.0254-6108.2021031401
[9] CHO J H, LEE C, HONG S H, et al. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction [J]. Advanced Materials (Deerfield Beach, Fla. ), 2022, 2208224.
[10] REN L H, MA J X, CHEN M, et al. Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater [J]. IScience, 2022, 25(5): 104342. doi: 10.1016/j.isci.2022.104342
[11] JIN L M, YOU S J, DUAN X G, et al. Peroxymonosulfate activation by Fe3O4-MnO2/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism [J]. Journal of Hazardous Materials, 2022, 423: 127111. doi: 10.1016/j.jhazmat.2021.127111
[12] ZHENG W T, LIU Y B, LIU W, et al. A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants [J]. Water Research, 2021, 194: 116961. doi: 10.1016/j.watres.2021.116961
[13] SAEEDIRAD R, GANJALI S T, RASHIDI A, et al. Experimental and computational study of organic sulfur removal proficiency of (Ni, Cu, Co)-doped ZIF-8 adsorbents [J]. ChemistrySelect, 2020, 5(1): 231-243. doi: 10.1002/slct.201903233
[14] WANG K D, WU C, WANG F, et al. In-situ insertion of carbon nanotubes into metal-organic frameworks-derived α- Fe2O3 polyhedrons for highly sensitive electrochemical detection of nitrite [J]. Electrochimica Acta, 2018, 285: 128-138. doi: 10.1016/j.electacta.2018.07.228
[15] ZHOU L, LI N, OWENS G, et al. Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8 [J]. Chemical Engineering Journal, 2019, 362: 628-637. doi: 10.1016/j.cej.2019.01.068
[16] SHEN B W, WANG B X, ZHU L Y, et al. Properties of cobalt- and nickel-doped zif-8 framework materials and their application in heavy-metal Removal from wastewater [J]. Nanomaterials (Basel, Switzerland), 2020, 10(9): 1636. doi: 10.3390/nano10091636
[17] LI Z Z, SHEN C S, LIU Y B, et al. Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton [J]. Applied Catalysis B:Environmental, 2020, 260: 118204. doi: 10.1016/j.apcatb.2019.118204
[18] 张格红, 赵平歌, 廖志鹏, 等. 超声强化铋掺杂氧化铟降解偶氮染料废水 [J]. 环境化学, 2016, 35(3): 526-532. doi: 10.7524/j.issn.0254-6108.2016.03.2015080701 ZHANG G H, ZHAO P G, LIAO Z P, et al. Ultrasonic enhanced degradation of AZO dye wastewater by bismuth doped indium oxide [J]. Environmental Chemistry, 2016, 35(3): 526-532(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.03.2015080701
[19] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) [J]. Environmental Science & Technology, 2014, 48(4): 2344-2351.
[20] YE Z H, PADILLA J A, XURIGUERA E, et al. A highly stable metal-organic framework-engineered FeS2/C nanocatalyst for heterogeneous electro-Fenton treatment: Validation in wastewater at mild pH [J]. Environmental Science & Technology, 2020, 54(7): 4664-4674.
[21] DUAN X G, SUN H Q, WANG S B. Metal-free carbocatalysis in advanced oxidation reactions [J]. Accounts of Chemical Research, 2018, 51(3): 678-687. doi: 10.1021/acs.accounts.7b00535
[22] WANG Y, PAN T, YU Y F, et al. A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water [J]. Water Research, 2020, 185: 116136. doi: 10.1016/j.watres.2020.116136
[23] ZHU L L, JI J H, LIU J, et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control [J]. Angewandte Chemie (International Ed. in English), 2020, 59(33): 13968-13976. doi: 10.1002/anie.202006059
[24] LOU X Y, FANG C L, GENG Z N, et al. Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism [J]. Chemosphere, 2017, 173: 529-534. doi: 10.1016/j.chemosphere.2017.01.093
[25] MENG H, NIE C Y, LI W L, et al. Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: Epicarp and mesocarp of citrus peels as examples [J]. Journal of Hazardous Materials, 2020, 399: 123043. doi: 10.1016/j.jhazmat.2020.123043
[26] NIE G, HUANG J, HU Y Z, et al. Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu0/Fe3O4 submicron composites [J]. Chinese Journal of Catalysis, 2017, 38(2): 227-239. doi: 10.1016/S1872-2067(16)62566-4