[1] |
AKHAVAN A, GOLCHIN A. Estimation of arsenic leaching from Zn-Pb mine tailings under environmental conditions [J]. Journal of Cleaner Production, 2021, 295: 126477. doi: 10.1016/j.jclepro.2021.126477
|
[2] |
BUNDSCHUH J, SCHNEIDER J, ALAM M A, et al. Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts [J]. Science of the Total Environment, 2021, 780: 146274. doi: 10.1016/j.scitotenv.2021.146274
|
[3] |
GONG Y W, QU Y J, YANG S H, et al. Status of arsenic accumulation in agricultural soils across China (1985-2016) [J]. Environmental Research, 2020, 186: 109525. doi: 10.1016/j.envres.2020.109525
|
[4] |
UDOVIC M, LESTAN D. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: Remediation efficiency and soil impact [J]. Chemosphere, 2012, 88(6): 718-724. doi: 10.1016/j.chemosphere.2012.04.040
|
[5] |
黄安林, 刘桂华, 柴冠群, 等. 不同钝化材料对农田土壤中砷的钝化效果研究 [J]. 中国农学通报, 2021, 37(1): 100-107. doi: 10.11924/j.issn.1000-6850.casb20200200152
HUANG A L, LIU G H, CHAI G Q, et al. Effect of different passivation materials on arsenic in farmland soil [J]. Chinese Agricultural Science Bulletin, 2021, 37(1): 100-107(in Chinese). doi: 10.11924/j.issn.1000-6850.casb20200200152
|
[6] |
REBOREDO F H, PELICA J, LIDON F C, et al. The tolerance of eucalyptus globulus to soil contamination with arsenic [J]. Plants, 2021, 10(4): 627. doi: 10.3390/plants10040627
|
[7] |
叶文玲, 周于杰, 晏士玮, 等. 微生物成矿技术在环境砷污染治理中的应用研究进展 [J]. 土壤学报, 2021, 58(4): 862-875.
YE W L, ZHOU Y J, YAN S W, et al. Advancement of research on application of microbial mineralization technology in remediation of arsenic contaminated environment [J]. Acta Pedologica Sinica, 2021, 58(4): 862-875(in Chinese).
|
[8] |
GOVARTHANAN M, MYTHILI R, SELVANKUMAR T, et al. Myco-phytoremediation of arsenic- and lead-contaminated soils by helianthus annuus and wood rot fungi, trichoderma sp. isolated from decayed wood [J]. Ecotoxicology and Environmental Safety, 2018, 151: 279-284. doi: 10.1016/j.ecoenv.2018.01.020
|
[9] |
YAO W K, CAI Z P, SUN S Y, et al. Electrokinetic-enhanced remediation of actual arsenic-contaminated soils with approaching cathode and Fe0 permeable reactive barrier [J]. Journal of Soils and Sediments, 2020, 20(3): 1526-1533. doi: 10.1007/s11368-019-02459-4
|
[10] |
MOREIRA V R, LEBRON Y, SANTOS L, et al. Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes [J]. Process Safety and Environmental Protection, 2021, 148: 604-623. doi: 10.1016/j.psep.2020.11.033
|
[11] |
OBIRI-NYARKO F, GRAJALES-MESA S J, MALINA G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation [J]. Chemosphere, 2014, 111: 243-259. doi: 10.1016/j.chemosphere.2014.03.112
|
[12] |
赵景联. 环境修复原理与技术[M]. 北京: 化学工业出版社, 2006: 46-48.
ZHAO J L. Principle and technology of environmental remediation [M]. Beijing: Chemical Industry Press, 2006: 46-48 (in Chinese).
|
[13] |
TROIS C, CIBATI A. South African sands as a low cost alternative solution for arsenic removal from industrial effluents in permeable reactive barriers: column tests [J]. Chemical Engineering Journal, 2015, 259: 981-989. doi: 10.1016/j.cej.2014.08.063
|
[14] |
丁雪军, 安太成, 傅家谟, 等. 柱撑粘土复合材料的研究进展及其在环境污染物治理方面的应用 [J]. 地球化学, 2005, 34(6): 626-634. doi: 10.19700/j.0379-1726.2005.06.010
DING X J, AN T C, FU J M, et al. Study situation of pillared clay and its applications in the environmental pollutants treatment [J]. Geochimica, 2005, 34(6): 626-634(in Chinese). doi: 10.19700/j.0379-1726.2005.06.010
|
[15] |
ARNAMWONG S, SUKSABYE P, THIRAVETYAN P. Using kaolin in reduction of arsenic in rice grains: Effect of different types of kaolin, pH and arsenic complex [J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(4): 556-561. doi: 10.1007/s00128-016-1740-8
|
[16] |
DOUŠOVÁ B, LHOTKA M, GRYGAR T, et al. In situ co-adsorption of arsenic and iron/manganese ions on raw clays [J]. Applied Clay Science, 2011, 54(2): 166-171. doi: 10.1016/j.clay.2011.08.004
|
[17] |
夏华, 王方正. 高岭石/有机插层复合物[C]//第五届中国功能材料及其应用学术会议论文集Ⅱ. 北京·秦皇岛, 2004: 1132-1139.
XIA H, WANG F Z. Kaolinite/organic intercalation complexes[C]: Proceedings of The Fifth China National Conference on Functional Materials and ApplicationsⅡ, Beijing·Qinghuangdao, 2004: 1132-1139 (in Chinese).
|
[18] |
LIN S H, JUANG R S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite [J]. Journal of Hazardous Materials, 2002, 92(3): 315-326. doi: 10.1016/S0304-3894(02)00026-2
|
[19] |
SHABANI E, SALIMI F, JAHANGIRI A. Removal of arsenic and copper from water solution using magnetic iron/bentonite nanoparticles (Fe3O4/bentonite) [J]. Silicon, 2019, 11(2): 961-971. doi: 10.1007/s12633-018-9895-z
|
[20] |
MICHAEL-LEO D C, KHRYSLYN A, EDEN-MAY D P, et al. Nanoclay-supported zero-valent iron as an efficient adsorbent material for arsenic [J]. Advanced Materials Research, 2013, 686: 296-304. doi: 10.4028/www.scientific.net/AMR.686.296
|
[21] |
BARAKAN S, AGHAZADEH V, BEYRAGH A S, et al. Thermodynamic, kinetic and equilibrium isotherm studies of As(V) adsorption by Fe(III)-impregnated bentonite [J]. Environment, Development and Sustainability, 2020, 22(6): 5273-5295. doi: 10.1007/s10668-019-00424-2
|
[22] |
BUZETZKY D, TÓTH N C, NAGY N M, et al. Application of modified bentonites for arsenite(III) removal from drinking water [J]. Periodica Polytechnica Chemical Engineering, 2018, 63(1): 113-121. doi: 10.3311/PPch.12197
|
[23] |
王楠, 梁成华, 杜立宇, 等. 柱撑蒙脱石对水中砷(V)的吸附研究 [J]. 工业水处理, 2009, 29(7): 31-35.
WANG N, LIANG C H, DU L Y, et al. Adsorption of arsenate aqueous solutions by polymeric Al/Fe modified montmorillonite [J]. Industrial Water Treatment, 2009, 29(7): 31-35(in Chinese).
|
[24] |
NA P, JIA X M, YUAN B, et al. Arsenic adsorption on Ti-pillared montmorillonite [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(5): 708-714.
|
[25] |
MISHRA T, MAHATO D K. A comparative study on enhanced arsenic(Ⅴ) and arsenic(Ⅲ) removal by iron oxide and manganese oxide pillared clays from ground water [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 1224-1230. doi: 10.1016/j.jece.2016.01.022
|
[26] |
PENG X J, LUAN Z K, ZHANG H M, et al. Zirconia pillared montmorillonite for removal of arsenate from water [J]. Journal of Environmental Science and Health, Part A, 2005, 40(5): 1055-1067. doi: 10.1081/ESE-200056159
|
[27] |
陈亚. 粘土矿物强化零价铁去除废水中重金属污染物的作用研究[D]. 宁波: 宁波大学, 2015. 58-59.
CHEN Y. Enhanced removal of heavy metals from wastewater by using the mixture of zero-valent iron and clay minerals[D]. Ningbo: Ningbo University, 2015. 58-59 (in Chinese).
|
[28] |
谌建宇, 许振成, 骆其金, 等. 应用可渗透反应墙技术修复受污染河水水质的研究 [J]. 中国给水排水, 2009, 25(9): 5-7+11.
CHEN J Y, XU Z C, LUO Q J, et al. Application of permeable reactive barrier for remediation of polluted river water [J]. China Water & Wastewater, 2009, 25(9): 5-7+11(in Chinese).
|
[29] |
YANG J J, MA T X, LI X Q, et al. Removal of heavy metals and metalloids by amino‐modified biochar supporting nanoscale zero-valent iron [J]. Journal of Environmental Quality, 2018, 47(5): 1196-1204. doi: 10.2134/jeq2017.08.0320
|
[30] |
BONI M, MARZEDDU S, TATTI F, et al. Experimental and numerical study of biochar fixed bed column for the adsorption of arsenic from aqueous solutions [J]. Water, 2021, 13(7): 915. doi: 10.3390/w13070915
|
[31] |
SRIVASTAV A L, PHAM T D, IZAH S C, et al. Biochar adsorbents for arsenic removal from water environment: a review [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(4): 616-628. doi: 10.1007/s00128-021-03374-6
|
[32] |
ALKURDI S S A, HERATH I, BUNDSCHUH J, et al. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? [J]. Environment International, 2019, 127: 52-69. doi: 10.1016/j.envint.2019.03.012
|
[33] |
AGRAFIOTI E, KALDERIS D, DIAMADOPOULOS E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge [J]. Journal of Environmental Management, 2014, 133: 309-314.
|
[34] |
DONG X L, MA L Q, GRESS J, et al. Enhanced Cr(Ⅵ) reduction and As(Ⅲ) oxidation in ice phase: Important role of dissolved organic matter from biochar [J]. Journal of Hazardous Materials, 2014, 267: 62-70. doi: 10.1016/j.jhazmat.2013.12.027
|
[35] |
ZHANG M, GAO B, YAO Y, et al. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions [J]. Chemical Engineering Journal, 2012, 210: 26-32. doi: 10.1016/j.cej.2012.08.052
|
[36] |
ZHANG M, GAO B, YAO Y, et al. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition [J]. Chemosphere, 2013, 92(8): 1042-1047. doi: 10.1016/j.chemosphere.2013.02.050
|
[37] |
KORNILOVYCH B, WIREMAN M, UBALDINI S, et al. Uranium removal from groundwater by permeable reactive barrier with zero-valent iron and organic carbon mixtures: laboratory and field studies [J]. Metals, 2018, 8(6): 408. doi: 10.3390/met8060408
|
[38] |
何培芬. 丝瓜络作为模拟可渗透反应墙介质处理地下水中硝酸盐研究[D]. 广州: 广州大学, 2019. 73-74.
HE P F. Study on removal of nitrogen from groundwater by loofah sponge solid carbon as simulate permeable reactive barrier media[D]. Guangzhou: Guangzhou University, 2019. 73-74 (in Chinese).
|
[39] |
CHEN X J, YANG L C, ZHANG J F, et al. Exploration of As(Ⅲ)/As(Ⅴ) uptake from aqueous solution by synthesized calcium sulfate whisker [J]. Chinese Journal of Chemical Engineering, 2014, 22(11/12): 1340-1346.
|
[40] |
JIA C Y, WU L C, CHEN Q S, et al. Distribution behavior of arsenate into α-calcium sulfate hemihydrate transformed from gypsum in solution [J]. Chemosphere, 2020, 255: 126936. doi: 10.1016/j.chemosphere.2020.126936
|
[41] |
FUKUSHI K, MUNEMOTO T, SAKAI M, et al. Monohydrocalcite: A promising remediation material for hazardous anions [J]. Science and Technology of Advanced Materials, 2011, 12(6): 064702. doi: 10.1088/1468-6996/12/6/064702
|
[42] |
DAVIS A, WEBB C, DIXON D, et al. Arsenic removal from drinking water by limestone-based material [J]. Mining Engineering, 2007, 59(2): 71-74.
|
[43] |
SALAMEH Y, ALBADARIN A B, ALLEN S, et al. Arsenic(III, V) adsorption onto charred dolomite: Charring optimization and batch studies [J]. Chemical Engineering Journal, 2015, 259: 663-671. doi: 10.1016/j.cej.2014.08.038
|
[44] |
TATSUHARA T, ARIMA T, IGARASHI T, et al. Combined neutralization-adsorption system for the disposal of hydrothermally altered excavated rock producing acidic leachate with hazardous elements [J]. Engineering Geology, 2012, 139/140: 76-84. doi: 10.1016/j.enggeo.2012.04.006
|
[45] |
KUNDU S, PAL A, MANDAL M, et al. Hardened paste of portland cement: A new low-cost adsorbent for the removal of arsenic from water [J]. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(1): 185-202.
|
[46] |
TANGVIROON P, ENDO Y, FUJINAKA R, et al. Change in arsenic leaching from silty soil by adding slag cement [J]. Water, Air, & Soil Pollution, 2020, 231(6): 259.
|
[47] |
李志建, 魏丽, 倪恒. 零价铁可渗透反应屏障钝化和堵塞研究进展及案例分析 [J]. 环境工程, 2022, 40(2): 206-213,224. doi: 10.13205/j.hjgc.202202031
LI Z J, WEI L, NI H. Research advances and case study on passivation and clogging in permeable reactive barrier(PRB) [J]. Environmental Engineering, 2022, 40(2): 206-213,224(in Chinese). doi: 10.13205/j.hjgc.202202031
|
[48] |
WANG Y, PLEASANT S, JAIN P, et al. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills [J]. Waste Management, 2016, 53: 128-135. doi: 10.1016/j.wasman.2016.02.018
|
[49] |
KLAS S, KIRK D W. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron [J]. Journal of Hazardous Materials, 2013, 252/253: 77-82. doi: 10.1016/j.jhazmat.2013.02.044
|
[50] |
RAO P H, MAK M S H, LIU T Z, et al. Effects of humic acid on arsenic(Ⅴ) removal by zero-valent iron from groundwater with special references to corrosion products analyses [J]. Chemosphere, 2009, 75(2): 156-162. doi: 10.1016/j.chemosphere.2008.12.019
|
[51] |
KÖBER R, WELTER E, EBERT M, et al. Removal of arsenic from groundwater by zerovalent iron and the role of sulfide [J]. Environmental Science & Technology, 2005, 39(20): 8038-8044.
|
[52] |
BITERNA M, ANTONOGLOU L, LAZOU E, et al. Arsenite removal from waters by zero valent iron: Batch and column tests [J]. Chemosphere, 2010, 78(1): 7-12. doi: 10.1016/j.chemosphere.2009.10.007
|
[53] |
GUO X J, YANG Z, DONG H Y, et al. Simple combination of oxidants with zero-valent-iron(ZVI) achieved very rapid and highly efficient removal of heavy metals from water [J]. Water Research, 2016, 88: 671-680. doi: 10.1016/j.watres.2015.10.045
|
[54] |
CHOWDHURY S R, YANFUL E K. Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles [J]. Water and Environment Journal, 2011, 25(3): 429-437. doi: 10.1111/j.1747-6593.2010.00242.x
|
[55] |
GUO H M, STÜBEN D, BERNER Z A. Adsorption of arsenic(Ⅲ) and arsenic(Ⅴ) from groundwater using natural siderite as the adsorbent [J]. Journal of Colloid and Interface Science, 2007, 315(1): 47-53. doi: 10.1016/j.jcis.2007.06.035
|
[56] |
LI F L, GUO H M, ZHAO K, et al. Modeling transport of arsenic through modified granular natural siderite filters for arsenic removal [J]. Geoscience Frontiers, 2019, 10(5): 1755-1764. doi: 10.1016/j.gsf.2018.12.002
|
[57] |
XU W Y, YANG B Q, JIA F F, et al. Removal of As(V) from aqueous solution by using cement-porous hematite composite granules as adsorbent [J]. Results in Physics, 2018, 11: 23-29. doi: 10.1016/j.rinp.2018.08.031
|
[58] |
AREDES S, KLEIN B, PAWLIK M. The removal of arsenic from water using natural iron oxide minerals [J]. Journal of Cleaner Production, 2013, 60: 71-76. doi: 10.1016/j.jclepro.2012.10.035
|
[59] |
YAN X L, SHAO J Q, WEN Q Q, et al. Stabilization of soil arsenic by natural limonite after mechanical activation and the associated mechanisms [J]. Science of the Total Environment, 2020, 708: 135118. doi: 10.1016/j.scitotenv.2019.135118
|
[60] |
SHI W, LI H, LIAO G, et al. Carbon steel slag and stainless steel slag for removal of arsenic from stimulant and real groundwater [J]. International Journal of Environmental Science and Technology, 2018, 15(11): 2337-2348. doi: 10.1007/s13762-017-1603-9
|
[61] |
KANEL S R, CHOI H, KIM J Y, et al. Removal of arsenic(III) from groundwater using low-cost industrial by-products-blast furnace slag [J]. Water Quality Research Journal, 2006, 41(2): 130-139. doi: 10.2166/wqrj.2006.015
|
[62] |
LI Y K, ZHU X, QI X J, et al. Efficient removal of arsenic from copper smelting wastewater in form of scorodite using copper slag [J]. Journal of Cleaner Production, 2020, 270: 122428. doi: 10.1016/j.jclepro.2020.122428
|
[63] |
CHOI N C, KIM S B, KIM S O, et al. Removal of arsenate and arsenite from aqueous solution by waste cast iron [J]. Journal of Environmental Sciences, 2012, 24(4): 589-595. doi: 10.1016/S1001-0742(11)60786-9
|
[64] |
ELJAMAL O, SASAKI K, TSURUYAMA S, et al. Kinetic model of arsenic sorption onto zero-valent iron (ZVI) [J]. Water Quality, Exposure and Health, 2011, 2(3): 125-132.
|
[65] |
NJARAMBA L K, PARK J B, LEE C S, et al. Permeable reactive barriers with zero-valent iron and pumice for remediation of groundwater contaminated with multiple heavy metals [J]. Environmental Engineering Science, 2021, 38(4): 245-255. doi: 10.1089/ees.2020.0109
|
[66] |
WILOPO W, SASAKI K, HIRAJIMA T, et al. Immobilization of arsenic and manganese in contaminated groundwater by permeable reactive barriers using zero valent iron and sheep manure [J]. Materials Transactions, 2008, 49(10): 2265-2274. doi: 10.2320/matertrans.M-MRA2008827
|
[67] |
SHIPLEY H J, YEAN S J, KAN A T, et al. Adsorption of arsenic to magnetite nanoparticles: Effect of particle concentration, pH, ionic strength, and temperature [J]. Environmental Toxicology and Chemistry, 2009, 28(3): 509-515. doi: 10.1897/08-155.1
|
[68] |
LIANG Q Q, ZHAO D Y. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles [J]. Journal of Hazardous Materials, 2014, 271: 16-23. doi: 10.1016/j.jhazmat.2014.01.055
|
[69] |
GUO H M, STÜBEN D, BERNER Z. Arsenic removal from water using natural iron mineral-quartz sand columns [J]. Science of the Total Environment, 2007, 377(2/3): 142-151.
|
[70] |
ZHAO K, GUO H M, ZHOU X Q. Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: Characterization and behaviors [J]. Applied Geochemistry, 2014, 48: 184-192. doi: 10.1016/j.apgeochem.2014.07.016
|
[71] |
MAMINDY-PAJANY Y, HUREL C, MARMIER N, et al. Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility [J]. Desalination, 2011, 281: 93-99. doi: 10.1016/j.desal.2011.07.046
|
[72] |
WANG S S, GAO B, ZIMMERMAN A R, et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite [J]. Bioresource Technology, 2015, 175: 391-395. doi: 10.1016/j.biortech.2014.10.104
|
[73] |
邵金秋, 温其谦, 阎秀兰, 等. 天然含铁矿物对砷的吸附效果及机制 [J]. 环境科学, 2019, 40(9): 4072-4080. doi: 10.13227/j.hjkx.201903023
SHAO J Q, WEN Q Q, YAN X L, et al. Adsorption and mechanism of arsenic by natural iron-containing minerals [J]. Environmental Science, 2019, 40(9): 4072-4080(in Chinese). doi: 10.13227/j.hjkx.201903023
|
[74] |
OH B T, LEE J Y, YOON J. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag [J]. Environmental Geochemistry and Health, 2007, 29(4): 331-336. doi: 10.1007/s10653-007-9094-0
|
[75] |
AHN J S, CHON C M, MOON H S, et al. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems [J]. Water Research, 2003, 37(10): 2478-2488. doi: 10.1016/S0043-1354(02)00637-1
|
[76] |
LI Y K, ZHU X, QI X J, et al. Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel [J]. Chemical Engineering Journal, 2020, 394: 124833. doi: 10.1016/j.cej.2020.124833
|
[77] |
LUUKKONEN T, RUNTTI H, NISKANEN M, et al. Simultaneous removal of Ni(Ⅱ), As(Ⅲ), and Sb(Ⅲ) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers [J]. Journal of Environmental Management, 2016, 166: 579-588. doi: 10.1016/j.jenvman.2015.11.007
|
[78] |
KENNEKE J F, MCCUTCHEON S C. Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer [J]. Environmental Science & Technology, 2003, 37(12): 2829-2835.
|
[79] |
KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron [J]. Environmental Science & Technology, 2005, 39(5): 1291-1298.
|
[80] |
LIU C H, CHUANG Y H, CHEN T Y, et al. Mechanism of arsenic adsorption on magnetite nanoparticles from water: Thermodynamic and spectroscopic studies [J]. Environmental Science & Technology, 2015, 49(13): 7726-7734.
|
[81] |
PARK J H, HAN Y S, AHN J S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream [J]. Water Research, 2016, 106: 295-303. doi: 10.1016/j.watres.2016.10.006
|
[82] |
KIM J H, CHANG B, KIM B J, et al. Applicability of weathered coal waste as a reactive material to prevent the spread of inorganic contaminants in groundwater [J]. Environmental Science and Pollution Research, 2020, 27(36): 45297-45310. doi: 10.1007/s11356-020-10418-7
|
[83] |
LI Y, ZHANG F S, XIU F R. Arsenic(Ⅴ) removal from aqueous system using adsorbent developed from a high iron-containing fly ash [J]. Science of the Total Environment, 2009, 407(21): 5780-5786. doi: 10.1016/j.scitotenv.2009.07.017
|
[84] |
ALTUNDOĞAN H S, ALTUNDOĞAN S, TÜMEN F, et al. Arsenic adsorption from aqueous solutions by activated red mud [J]. Waste Management, 2002, 22(3): 357-363. doi: 10.1016/S0956-053X(01)00041-1
|
[85] |
ZHOU L, DONG F Q, LIU J, et al. Coupling effect of Fe3+(aq) and biological, nano-sized FeS-coated limestone on the removal of redox-sensitive contaminants(As, Sb and Cr): Implications for in situ passive treatment of acid mine drainage [J]. Applied Geochemistry, 2017, 80: 102-111. doi: 10.1016/j.apgeochem.2017.03.005
|
[86] |
RODRÍGUEZ-ROMERO J A, MENDOZA-CASTILLO D I, REYNEL-ÁVILA H E, et al. Preparation of a new adsorbent for the removal of arsenic and its simulation with artificial neural network-based adsorption models [J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103928. doi: 10.1016/j.jece.2020.103928
|
[87] |
RAHAMAN M S, OMI F R, BASU A. Experimental and numerical modelling of arsenic adsorption in fixed-bed dynamic columns packed with Atlantic cod fish scales [J]. The Canadian Journal of Chemical Engineering, 2015, 93(11): 2024-2030. doi: 10.1002/cjce.22294
|
[88] |
RAZZAK A, JINNO K, HIROSHIRO Y, et al. Mathematical modeling of biologically mediated redox processes of iron and arsenic release in groundwater [J]. Environmental Geology, 2009, 58(3): 459-469. doi: 10.1007/s00254-008-1517-4
|
[89] |
TYROVOLA K, PEROULAKI E, NIKOLAIDIS N P. Modeling of arsenic immobilization by zero valent iron [J]. European Journal of Soil Biology, 2007, 43(5/6): 356-367.
|
[90] |
RASHID U S, SAINI-EIDUKAT B, BEZBARUAH A N. Modeling arsenic removal by nanoscale zero-valent iron [J]. Environmental Monitoring and Assessment, 2020, 192(2): 110. doi: 10.1007/s10661-020-8075-y
|
[91] |
WILKIN R T, ACREE S D, ROSS R R, et al. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies [J]. Journal of Contaminant Hydrology, 2009, 106(1/2): 1-14.
|
[92] |
BEAULIEU B, RAMIREZ R E. Arsenic remediation field study using a sulfate reduction and zero-valent iron PRB [J]. Groundwater Monitoring & Remediation, 2013, 33(2): 85-94.
|
[93] |
LUDWIG R D, SMYTH D J A, BLOWES D W, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB [J]. Environmental Science & Technology, 2009, 43(6): 1970-1976.
|
[94] |
LI Y, HUANG Y B, WU W S, et al. Research and application of arsenic-contaminated groundwater remediation by manganese ore permeable reactive barrier [J]. Environmental Technology, 2021, 42(13): 2009-2020. doi: 10.1080/09593330.2019.1687587
|
[95] |
STOYAN G, PLAMEN G, IRENA S, et al. Cleanup of acid mine drainage by means of a pilot-scale passive system [J]. Annual of the University of Mining and Geology “ST. Ivan Rilski”, Part I, Geology and Geophysics, 2005, 48: 217-220.
|