[1] AOBA T, FEJERSKOV O. Dental fluorosis: Chemistry and biology [J]. Critical Reviews in Oral Biology and Medicine:an Official Publication of the American Association of Oral Biologists, 2002, 13(2): 155-170. doi: 10.1177/154411130201300206
[2] AK S, BHATNAGAR M, VIG K, et al. Excess fluoride ingestion and thyroid hormone derangements in children living in Delhi, India [J]. Fluoride, 2005, 38(2): 98-108.
[3] AYOOB S, GUPTA A K. Fluoride in drinking water: A review on the status and stress effects [J]. Critical Reviews in Environmental Science and Technology, 2006, 36(6): 433-487. doi: 10.1080/10643380600678112
[4] 刘东生, 陈庆沐, 余志成, 袁芷云. 我国地方性氟病的地球化学问题 [J]. 地球化学, 1980, 9(1): 13-22. doi: 10.3321/j.issn:0379-1726.1980.01.002 LIU D S, CHEN Q M, YU Z C, et al. Geochemical environment problems concerning the endemic fluorine disease in China [J]. Geochimica, 1980, 9(1): 13-22(in Chinese). doi: 10.3321/j.issn:0379-1726.1980.01.002
[5] DAY J K, BRESNER C, COOMBS N D, et al. Colorimetric fluoride ion sensing by polyborylated ferrocenes: Structural influences on thermodynamics and kinetics [J]. Inorganic Chemistry, 2008, 47(3): 793-804. doi: 10.1021/ic701494p
[6] MORÉS S, MONTEIRO G C, SANTOS F D S, et al. Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium mono-fluoride CaF [J]. Talanta, 2011, 85(5): 2681-2685. doi: 10.1016/j.talanta.2011.08.044
[7] LI Y H, DUAN Y, ZHENG J, et al. Self-assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitive colorimetric detection of fluoride ions [J]. Analytical Chemistry, 2013, 85(23): 11456-11463. doi: 10.1021/ac402592c
[8] ZHU B C, YUAN F, LI R X, et al. A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells [J]. Chemical Communications, 2011, 47(25): 7098-7100. doi: 10.1039/c1cc11308a
[9] ZHOU Y, ZHANG J F, YOON J. Fluorescence and colorimetric chemosensors for fluoride-ion detection [J]. Chemical Reviews, 2014, 114(10): 5511-5571. doi: 10.1021/cr400352m
[10] LIU W, DAI X, BAI Z L, et al. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant lewis basic sites: A combined batch, X-ray absorption spectroscopy, and first principles simulation investigation [J]. Environmental Science & Technology, 2017, 51(7): 3911-3921.
[11] LIU W, DAI X, WANG Y, et al. Ratiometric monitoring of thorium contamination in natural water using a dual-emission luminescent europium organic framework [J]. Environmental science & technology, 2018, 53(1): 332-341.
[12] CHENG X H, JIA H, FENG J, et al. “Reactive” probe for fluoride: “Turn-on” fluorescent sensing in aqueous solution and bioimaging in living cells [J]. Sensors and Actuators B:Chemical, 2014, 199: 54-61. doi: 10.1016/j.snb.2014.03.054
[13] DU F F, BAO Y Y, LIU B, et al. POSS-containing red fluorescent nanoparticles for rapid detection of aqueous fluoride ions [J]. Chemical Communications, 2013, 49(41): 4631-4633. doi: 10.1039/c3cc40810h
[14] SHAMSIPUR M, SAFAVI A, MOHAMMADPOUR Z, et al. Fluorescent carbon nanodots for optical detection of fluoride ion in aqueous media [J]. Sensors and Actuators B:Chemical, 2015, 221: 1554-1560. doi: 10.1016/j.snb.2015.07.096
[15] LIU J B, YANG X H, WANG K M, et al. A switchable fluorescent quantum dot probe based on aggregation/disaggregation mechanism [J]. Chemical Communications, 2011, 47(3): 935-937. doi: 10.1039/C0CC03993D
[16] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757. doi: 10.1021/ja062677d
[17] ZHU S J, SONG Y B, ZHAO X H, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective [J]. Nano Research, 2015, 8(2): 355-381. doi: 10.1007/s12274-014-0644-3
[18] ZHANG Y Q, MA D K, ZHUANG Y, et al. One-pot synthesis of N-doped carbon dots with tunable luminescence properties [J]. Journal of Materials Chemistry, 2012, 22(33): 16714-16718. doi: 10.1039/c2jm32973e
[19] HU C, LI M Y, QIU J S, et al. Design and fabrication of carbon dots for energy conversion and storage [J]. Chemical Society Reviews, 2019, 48(8): 2315-2337. doi: 10.1039/C8CS00750K
[20] 傅鹏, 周丽华, 唐连凤, 等. 碳量子点的制备及其在能源与环境领域应用进展 [J]. 应用化学, 2016, 33(7): 742-755. doi: 10.11944/j.issn.1000-0518.2016.07.150393 FU P, ZHOU L H, TANG L F, et al. Progress in preparation of carbon quantum dots and its application in the fields of energy and environment [J]. Chinese Journal of Applied Chemistry, 2016, 33(7): 742-755(in Chinese). doi: 10.11944/j.issn.1000-0518.2016.07.150393
[21] PENG D, ZHANG L, LIANG R P, et al. Rapid detection of mercury ions based on nitrogen-doped graphene quantum dots accelerating formation of Manganese porphyrin [J]. ACS Sensors, 2018, 3(5): 1040-1047. doi: 10.1021/acssensors.8b00203
[22] LIU H, LI R S, ZHOU J, et al. Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off-on mechanism [J]. Analyst, 2017, 142(22): 4221-4227. doi: 10.1039/C7AN01136A
[23] ZHENG M, XIE Z G, QU D, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect [J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13242-13247.
[24] CHEN B B, LIU M L, ZHAN L, et al. Terbium (III) modified fluorescent carbon dots for highly selective and sensitive ratiometry of stringent [J]. Analytical chemistry, 2018, 90(6): 4003-4009. doi: 10.1021/acs.analchem.7b05149
[25] ZHANG Z, ZHANG D, SHI C, et al. 3, 4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selective fluorescent probe for the rapid detection of uranyl ions [J]. Environmental Science:Nano, 2019, 6(5): 1457-1465. doi: 10.1039/C9EN00148D
[26] TANG L, JI R, LI X, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots [J]. ACS nano, 2014, 8(6): 6312-6320. doi: 10.1021/nn501796r
[27] LI H, KONG W, LIU J, et al. Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection [J]. Carbon, 2015, 91: 66-75. doi: 10.1016/j.carbon.2015.04.032
[28] QU D, ZHENG M, ZHANG L G, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots [J]. Scientific Reports, 2014, 4: 5294. doi: 10.1038/srep05294
[29] LI L B, YU B, YOU T. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (Ⅱ) ions [J]. Biosensors and Bioelectronics, 2015, 74: 263-269. doi: 10.1016/j.bios.2015.06.050
[30] HUANG W W, LIN H, CAI Z, et al. A novel anthracene-based receptor: Highly sensitive fluorescent and colorimetric receptor for fluoride [J]. Talanta, 2010, 81(3): 967-971. doi: 10.1016/j.talanta.2010.01.045
[31] DONG M, PENG Y, DONG Y M, et al. A selective, colorimetric, and fluorescent chemodosimeter for relay recognition of fluoride and cyanide anions based on 1, 1'-binaphthyl scaffold [J]. Organic Letters, 2012, 14(1): 130-133. doi: 10.1021/ol202926e
[32] BARUAH U, GOGOI N, MAJUMDAR G, et al. β-Cyclodextrin and calix[4]arene-25, 26, 27, 28-tetrol capped carbon dots for selective and sensitive detection of fluoride [J]. Carbohydrate Polymers, 2015, 117: 377-383. doi: 10.1016/j.carbpol.2014.09.083
[33] ZHOU Y H, DONG X L, ZHANG Y X, et al. Highly selective fluorescence sensors for the fluoride anion based on carboxylate-bridged diiron complexes [J]. Dalton Transactions, 2016, 45(16): 6839-6846. doi: 10.1039/C5DT03801D
[34] WANG H, WANG Y, GUO J, et al. A new chemosensor for Ga3+ detection by fluorescent nitrogen-doped graphitic carbon dots [J]. RSC Advances, 2015, 5(17): 13036-13041. doi: 10.1039/C4RA15431B
[35] SHI L H, WANG Q, ZHANG C, et al. Tricolor emission carbon dots for label-free ratiometric fluorescent and colorimetric recognition of Al3+ and pyrophosphate ion and cellular imaging [J]. Sensors and Actuators B:Chemical, 2021, 345: 130375. doi: 10.1016/j.snb.2021.130375
[36] LIU C S, SHIH K, GAO Y X, et al. Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on the surface of alumina [J]. Journal of Soils and Sediments, 2012, 12(5): 724-733. doi: 10.1007/s11368-012-0506-0