[1] |
ZHIMIAO Z, XIAO Z, ZHUFANG W, et al. Enhancing the pollutant removal performance and biological mechanisms by adding ferrous ions into aquaculture wastewater in constructed wetland[J]. BioresourceTechnology, 2019, 293: 122003. doi: 10.1016/j.biortech.2019.122003
|
[2] |
CAO L, WANG W, YANG Y, et al. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China[J]. Environmental Science and Pollution Research-International, 2007, 14: 452-462. doi: 10.1065/espr2007.05.426
|
[3] |
LIU X G, SHAO Z, CHENG G, et al. Ecological engineering in pond aquaculture: A review from the whole‐process perspective in China[J]. Reviews in Aquaculture, 2021, 13(2): 1060-1076. doi: 10.1111/raq.12512
|
[4] |
LIU J, WU Y, WU C, et al. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review[J]. Bioresource Technology, 2017, 241: 1127-1137. doi: 10.1016/j.biortech.2017.06.054
|
[5] |
WANG H W, ZHAI Y J, WEI Y Y, et al. Evaluation of the effects of low-impact development practices under different rainy types: case of Fuxing Island Park, Shanghai, China[J]. Environmental Science and Pollution Research, 2019, 26: 6706-6716. doi: 10.1007/s11356-019-04129-x
|
[6] |
CHEN Y, SHAO Z, KONG Z, et al. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment[J]. Journal of Water Process Engineering, 2020, 37: 101414. doi: 10.1016/j.jwpe.2020.101414
|
[7] |
ZHANG W, SANG M, CHE W, et al. Nutrient removal from urban stormwater runoff by an up-flow and mixed-flow bioretention system[J]. Environmental Science and Pollution Research, 2019, 26: 17731-17739. doi: 10.1007/s11356-019-05091-4
|
[8] |
LI Y, ZHANG Y, YU H, et al. Enhancing nitrate removal from urban stormwater in an inverted bioretention system[J]. Ecological Engineering, 2021, 170: 106315. doi: 10.1016/j.ecoleng.2021.106315
|
[9] |
ALI W, TAKAIJUDIN H, YUSOF K W, et al. The common approaches of nitrogen removal in bioretention system[J]. Sustainability, 2021, 13(5): 2575. doi: 10.3390/su13052575
|
[10] |
BOLEIJ M, PABST M, NEU T R, et al. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge[J]. Environmental Science & Technology, 2018, 52(22): 13127-13135.
|
[11] |
XU J, LI C, SHEN Y, et al. Anaerobic ammonium oxidation (anammox) promoted by pyrogenic biochar: Deciphering the interaction with extracellular polymeric substances (EPS)[J]. Science of the Total Environment, 2022, 802: 149884. doi: 10.1016/j.scitotenv.2021.149884
|
[12] |
XIAO Y, ZHANG E, ZHANG J, et al. Extracellular polymeric substances are transient media for microbial extracellular electron transfer[J]. Science Advances, 2017, 3(7): e1700623. doi: 10.1126/sciadv.1700623
|
[13] |
WANG X, CHENT, GAO C, et al. Effect of extracellular polymeric substances removal and re-addition on the denitrification performance of activated sludge: carbon source metabolism, electron transfer and enzyme activity[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108069. doi: 10.1016/j.jece.2022.108069
|
[14] |
WU J, CAO X, ZHAO J, et al. Performance of biofilter with a saturated zone for urban stormwater runoff pollution control: Influence of vegetation type and saturation time[J]. Ecological Engineering, 2017, 105: 355-361. doi: 10.1016/j.ecoleng.2017.05.016
|
[15] |
LIU W, KE H, XIE J, et al. Characterizing the water quality and microbial communities in different zones of a recirculating aquaculture system using biofloc biofilters[J]. Aquaculture, 2020, 529: 735624. doi: 10.1016/j.aquaculture.2020.735624
|
[16] |
LIU W, LUO G, TAN H, et al. Effects of sludge retention time on water quality and bioflocs yield, nutritional composition, apparent digestibility coefficients treating recirculating aquaculture system effluent in sequencing batch reactor[J]. Aquacultural Engineering, 2016, 72: 58-64.
|
[17] |
REDMILE-GORDON M A, BROOKES P C, EVERSHED R P, et al. Measuring the soil-microbial interface: Extraction of extracellular polymeric substances (EPS) from soil biofilms[J]. Soil Biology and Biochemistry, 2014, 72: 163-171. doi: 10.1016/j.soilbio.2014.01.025
|
[18] |
ZHENG F, FANG J, GUO F, et al. Biochar based constructed wetland for secondary effluent treatment: Waste resource utilization[J]. Chemical Engineering Journal, 2022, 432: 134377. doi: 10.1016/j.cej.2021.134377
|
[19] |
WAN R, CHEN Y, ZHENG X, et al. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption[J]. Environmental Science & Technology, 2016, 50(18): 9915-9922.
|
[20] |
PETERSON I J, IGIELSKI S, DAVIS A P. Enhanced denitrification in bioretention using woodchips as an organic carbon source[J]. Journal of Sustainable Water in the Built Environment, 2015, 1(4): 04015004. doi: 10.1061/JSWBAY.0000800
|
[21] |
XIONG J, ZHUO J, LI J, et al. Removal of nitrogen from rainwater runoff by bioretention cells filled with modified collapsible loess[J]. Ecological Engineering, 2020, 158: 106065. doi: 10.1016/j.ecoleng.2020.106065
|
[22] |
QIU F, ZHAO S, ZHAO D, et al. Enhanced nutrient removal in bioretention systems modified with water treatment residuals and internal water storage zone[J]. Environmental Science:Water Research & Technology, 2019, 5(5): 993-1003.
|
[23] |
仇付国, 代一帆, 卢超, 等. 基质改良和结构优化强化雨水生物滞留系统除污[J]. 中国给水排水, 2017, 33(7): 157-162. doi: 10.19853/j.zgjsps.1000-4602.2017.07.036
|
[24] |
刘兴国. 池塘养殖污染与生态工程化调控技术研究[D]. 南京: 南京农业大学, 2011.
|
[25] |
林宏军, 王建龙, 赵梦圆, 等. 倒置生物滞留技术水量水质控制效果研究[J]. 水利水电技术, 2019, 50(6): 11-17.
|
[26] |
ZHANG H, ZHANG X, LIU J, et al. Coal gangue modified bioretention system for runoff pollutants removal and the biological characteristics[J]. Journal of Environmental Management, 2022, 314: 115044. doi: 10.1016/j.jenvman.2022.115044
|
[27] |
ALAM T, BEZARES-CRUZ J C, Mahmoud A, et al. Nutrients and solids removal in bioretention columns using recycled materials under intermittent and frequent flow operations[J]. Journal of Environmental Management, 2021, 297: 113321. doi: 10.1016/j.jenvman.2021.113321
|
[28] |
LI H, ZHANG J, ZHANG C, et al. Responses of anammox and sulfur/pyrite autotrophic denitrification in one-stage system to high nitrogen load: Performance, metabolic and bacterial community[J]. Journal of Environmental Management, 2023, 332: 117427. doi: 10.1016/j.jenvman.2023.117427
|
[29] |
LI S W, SHENG G P, CHENG Y Y, et al. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria[J]. Scientific Reports, 2016, 6(1): 1-7. doi: 10.1038/s41598-016-0001-8
|
[30] |
HU A, CHENG X, WANG C, et al. Extracellular polymeric substances trigger an increase in redox mediators for enhanced sludge methanogenesis[J]. Environmental Research, 2020, 191: 110197. doi: 10.1016/j.envres.2020.110197
|
[31] |
SUN J, GUO L, LI Q, et al. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge[J]. Bioresource Technology, 2016, 219: 614-623. doi: 10.1016/j.biortech.2016.08.042
|
[32] |
ZHANG M, XU Y, XIAO K Q, et al. Characterising soil extracellular polymeric substances (EPS) by application of spectral-chemometrics and deconstruction of the extraction process[J]. Chemical Geology, 2023, 618: 121271. doi: 10.1016/j.chemgeo.2022.121271
|
[33] |
PAN D, SHAO S, ZHONG J, et al. Performance and mechanism of simultaneous nitrification–denitrification and denitrifying phosphorus removal in long-term moving bed biofilm reactor (MBBR)[J]. Bioresource Technology, 2022, 348: 126726. doi: 10.1016/j.biortech.2022.126726
|
[34] |
ZUBROWSKA-SUDOL M, WALCZAK J. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms[J]. Water Research, 2014, 61: 200-209. doi: 10.1016/j.watres.2014.05.029
|
[35] |
LIU Y, WANG H, XU Y, et al. Achieving enhanced denitrification via hydrocyclone treatment on mixed liquor recirculation in the anoxic/aerobic process[J]. Chemosphere, 2017, 189: 206-212. doi: 10.1016/j.chemosphere.2017.09.056
|