[1] |
CARDELINO C A, CHAMEIDES W L. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere[J]. Journal of the Air & Waste Management Association, 1995, 45(3): 161-180.
|
[2] |
UTEMBE S R, WATSON L A, SHALLCROSS D E, et al. A common representative intermediates (CRI) mechanism for VOC degradation. part 3: development of a secondary organic aerosol module[J]. Atmospheric Environment, 2009, 43(12): 1982-1990. doi: 10.1016/j.atmosenv.2009.01.008
|
[3] |
潘昕, 张巍, 黄银芝, 等. 典型涂料制造企业VOCs排放量核算与排放特征分析[J]. 环境工程学报, 2021, 15(3): 1049-1059. doi: 10.12030/j.cjee.202008022
|
[4] |
DU Z, MO J, ZHANG Y. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China[J]. Environment International, 2014, 73: 33-45. doi: 10.1016/j.envint.2014.06.014
|
[5] |
DU Z, MO J, ZHANG Y, et al. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China[J]. Building and Environment, 2014, 72: 75-81. doi: 10.1016/j.buildenv.2013.10.013
|
[6] |
TSAI W Y, CHAN L Y, BLAKE D R, et al. Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai[J]. Atmospheric Chemistry and Physics Discussions, 2006, 6(3): 3687-3707.
|
[7] |
MONOD A, SIVE B C, AVINO P, et al. Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene[J]. Atmospheric Environment, 2001, 35(1): 135-149. doi: 10.1016/S1352-2310(00)00274-0
|
[8] |
LESON G, WINER A M. Biofiltration: An innovative air pollution control technology for VOC emissions[J]. Journal of the Air & Waste Management Association, 1991, 41(8): 1045-1054.
|
[9] |
DUMANOGLU Y, KARA M, ALTIOK H, et al. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region[J]. Atmospheric Environment, 2014, 98: 168-178. doi: 10.1016/j.atmosenv.2014.08.048
|
[10] |
KHAN F I, GHOSHAL A K. Removal of volatile organic compounds from polluted air[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 527-545. doi: 10.1016/S0950-4230(00)00007-3
|
[11] |
PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds[J]. Critical Reviews in Environmental Science and Technology, 2008, 39(1): 41-78. doi: 10.1080/10643380701413658
|
[12] |
张丹庆, 卜龙利, 陈瑾, 等. 微波催化燃烧技术处理印刷包装行业VOCs[J]. 环境工程学报, 2022, 16(2): 524-534. doi: 10.12030/j.cjee.202012005
|
[13] |
ZHOU Q, ZHANG L, CHEN J, et al. Enhanced stable long-term operation of biotrickling filters treating VOCs by low-dose ozonation and its affecting mechanism on biofilm[J]. Chemosphere, 2016, 162: 139-147. doi: 10.1016/j.chemosphere.2016.07.072
|
[14] |
MOHAMED E F, AWAD G, ANDRIANTSIFERANA C, et al. Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus[J]. Environmental Technology, 2015, 131(9/10/11/12): 1197-1207.
|
[15] |
GARCIA-PEREZ T, AIZPURU A, ARRIAGA S. By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses[J]. Journal of Hazardous Materials, 2013, 262: 732-740. doi: 10.1016/j.jhazmat.2013.09.053
|
[16] |
CHOI B S, YI J. Simulation and optimization on the regenerative thermal oxidation of volatile organic compounds[J]. Chemical Engineering Journal, 2000, 76(2): 103-114. doi: 10.1016/S1385-8947(99)00118-7
|
[17] |
ORDONEZ S, BELLO L, SASTRE H, et al. Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst[J]. Applied Catalysis B:Environmental, 2002, 38(2): 139-149. doi: 10.1016/S0926-3373(02)00036-X
|
[18] |
JEON E C, KIM K J, Kim J C, et al. Novel hybrid technology for VOC control using an electron beam and catalyst[J]. Research on Chemical Intermediates, 2008, 34(8/9): 863-870.
|
[19] |
LI J, LI B, SUI G, et al. Removal of volatile organic compounds from air using supported ionic liquid membrane containing ultraviolet-visible light-driven Nd-TiO2 nanoparticles[J]. Journal of Molecular Structure, 2021, 1231: 130023. doi: 10.1016/j.molstruc.2021.130023
|
[20] |
CHOUDHARY T V, BANERJEE S, CHOUDHARY V R. Catalysts for combustion of methane and lower alkanes[J]. Applied Catalysis A General, 2002, 234(1/2): 1-23.
|
[21] |
FUTAMURA S, ZHANG A H, YAMAMOTO T. The dependence of nonthermal plasma behavior of VOCs on their chemical structures[J]. Journal of Electrostatics, 1997, 42(1/2): 51-62.
|
[22] |
ZHOU A, LIU J L, ZHU B, et al. Plasma catalytic removal of VOCs using cycled storage-discharge (CSD) mode: An assessment methodology based on toluene for reaction kinetics and intermediates[J]. Chemical Engineering Journal, 2022, 433: 134338. doi: 10.1016/j.cej.2021.134338
|
[23] |
DAS D, GAUR V, VERMA N. Removal of volatile organic compound by activated carbon fiber[J]. Carbon, 2004, 42(14): 2949-2962. doi: 10.1016/j.carbon.2004.07.008
|
[24] |
LEE D G, KIM J H, LEE C H. Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed[J]. Separation and Purification Technology, 2011, 77(3): 312-324. doi: 10.1016/j.seppur.2010.12.022
|
[25] |
SERRANO D P, CALLEJA G, BOTAS J A, et al. Adsorption and hydrophobic properties of mesostructured MCM-41 and SBA-15 materials for volatile organic compound removal[J]. Industrial & Engineering Chemistry Research, 2004, 43(22): 7010-7018.
|
[26] |
LIU L, TIAN S, NING P. Phase behavior of tweens/toluene/water microemulsion systems for the solubilization absorption of toluene[J]. Journal of Solution Chemistry, 2010, 39(4): 457-472. doi: 10.1007/s10953-010-9519-8
|
[27] |
LAWSON R B, ADAMS C D. Enhanced VOC absorption using the ozone/hydrogen peroxide advanced oxidation process[J]. Journal of the Air & Waste Management Association, 1999, 49(11): 1315-1323.
|
[28] |
DAVIS R J, ZEISS R F. Cryogenic condensation: A cost-effective technology for controlling VOC emissions[J]. 2002, 21(2): 111-115.
|
[29] |
GUPTA V K, VERMA N. Removal of volatile organic compounds by cryogenic condensation followed by adsorption[J]. Chemical Engineering Science, 2002, 57(14): 2679-2696. doi: 10.1016/S0009-2509(02)00158-6
|
[30] |
XU H, XU X, CHEN L, et al. A novel cryogenic condensation system based on heat-driven refrigerator without power input for volatile organic compounds recovery[J]. Energy Conversion and Management, 2021, 238: 114157. doi: 10.1016/j.enconman.2021.114157
|
[31] |
WANG S, LIANG Z, CHAO L, et al. Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents[J]. Journal of Colloid & Interface Science, 2014, 428(428): 185-190.
|
[32] |
GHOSHAL A K, MANJARE S D. Selection of appropriate adsorption technique for recovery of VOCs: an analysis[J]. Journal of Loss Prevention in the Process Industries, 2002, 15(6): 413-421. doi: 10.1016/S0950-4230(02)00042-6
|
[33] |
党小庆, 王琪, 曹利, 等. 吸附法净化工业VOCs的研究进展[J]. 环境工程学报, 2021, 15(11): 3479-3492. doi: 10.12030/j.cjee.202011052
|
[34] |
DAVINI P. Adsorption and desorption of SO2 on active carbon: The effect of surface basic groups[J]. Carbon, 1990, 28(4): 565-571. doi: 10.1016/0008-6223(90)90054-3
|
[35] |
杨晓娜, 任晓玲, 严孝清, 等. 活性炭对VOCs的吸附研究进展[J]. 材料导报, 2021, 35(17): 17111-17124. doi: 10.11896/cldb.21010141
|
[36] |
BERCIC G, PINTAR A, LEVEC J. Desorption of phenol from activated carbon by hot water regeneration. Desorption Isotherms[J]. Industrial & Engineering Chemistry Research, 1996, 35(12): 4619-4625.
|
[37] |
荀志萌, 李照海, 何娇, 等. 大风量低浓度VOCs气体二次吸附浓缩净化技术开发[J]. 环境工程学报, 2016, 10(1): 283-288. doi: 10.12030/j.cjee.20160146
|
[38] |
李照海, 羌宁, 刘涛, 等. 活性炭和沸石分子筛处理非稳定排放VOCs气体的性能比较[J]. 环境工程学报, 2017, 11(5): 2933-2939. doi: 10.12030/j.cjee.201611026
|
[39] |
羌宁, 史天哲, 缪海超. 挥发性有机物污染控制方案的运行费用效能比较[J]. 环境科学, 2020, 41(2): 638-646. doi: 10.13227/j.hjkx.201907029
|
[40] |
党小庆, 敬开锐, 马红周, 等. 吸附VOCs活性炭真空热再生及影响因素实验[J]. 环境工程, 2022, 40(8): 62-68.
|
[41] |
徐胜男, 羌宁, 裴冰. 活性炭处理甲苯气体吸附再生实验研究[J]. 环境污染与防治, 2008, 29(1): 57-59. doi: 10.3969/j.issn.1001-3865.2008.01.017
|
[42] |
李慧, 陈哲, 钟缘, 等. 乙酸丁酯废气在活性炭上的吸附和脱附行为研究[J]. 离子交换与吸附, 2020, 36(1): 31-40. doi: 10.16026/j.cnki.iea.2020010031
|
[43] |
刘义鑫. VOCs吸附箱结构及其吸附剂脱附效果优化研究[D]. 宁波: 宁波大学, 2019.
|
[44] |
陈君毅, 陈磊, 蒙昊蓝, 等. 基于神经网络的车辆交通协调性评价模型[J]. 同济大学学报(自然科学版), 2021, 49(1): 135-141. doi: 10.11908/j.issn.0253-374x.20243
|