[1] WU P, JIN X J, QIU Y C, et al. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over Manganese-based oxide catalysts [J]. Environmental Science & Technology, 2021, 55(8): 4268-4286.
[2] 黎维彬, 龚浩. 催化燃烧去除VOCs污染物的最新进展 [J]. 物理化学学报, 2010, 26(4): 885-894. doi: 10.3866/PKU.WHXB20100436 LI W B, GONG H. Recent progress in the removal of volatile organic compounds by catalytic combustion [J]. Acta Physico-Chimica Sinica, 2010, 26(4): 885-894(in Chinese). doi: 10.3866/PKU.WHXB20100436
[3] GAN Q, FU M L, LIU P, et al. Synergistic catalytic ozonation of toluene with Manganese and cerium varies at low temperature [J]. Chinese Chemical Letters, 2022, 33(5): 2726-2730. doi: 10.1016/j.cclet.2021.09.006
[4] SIMAYI M, SHI Y Q, XI Z Y, et al. Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives [J]. Science of the Total Environment, 2022, 826: 153994. doi: 10.1016/j.scitotenv.2022.153994
[5] ZHANG X M, ZHAO W J, NIE L, et al. A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example [J]. Environmental Pollution, 2021, 268: 115868. doi: 10.1016/j.envpol.2020.115868
[6] HUANG H B, HUANG H L, FENG Q Y, et al. Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation [J]. Applied Catalysis B:Environmental, 2017, 203: 870-878. doi: 10.1016/j.apcatb.2016.10.083
[7] LIU B Y, ZHAN Y J, XIE R J, et al. Efficient photocatalytic oxidation of gaseous toluene in a bubbling reactor of water [J]. Chemosphere, 2019, 233: 754-761. doi: 10.1016/j.chemosphere.2019.06.002
[8] 汪涵, 郭桂悦, 周玉莹, 等. 挥发性有机废气治理技术的现状与进展 [J]. 化工进展, 2009, 28(10): 1833-1841. WANG H, GUO G Y, ZHOU Y Y, et al. Status and progress of treating volatile organic compounds [J]. Chemical Industry and Engineering Progress, 2009, 28(10): 1833-1841(in Chinese).
[9] XIE R J, LIU G Y, LIU D P, et al. Wet scrubber coupled with heterogeneous UV/Fenton for enhanced VOCs oxidation over Fe/ZSM-5 catalyst [J]. Chemosphere, 2019, 227: 401-408. doi: 10.1016/j.chemosphere.2019.03.160
[10] XIE X W, XIE R J, SUO Z Y, et al. A highly dispersed Co-Fe bimetallic catalyst to activate peroxymonosulfate for VOC degradation in a wet scrubber [J]. Environmental Science:Nano, 2021, 8(10): 2976-2987. doi: 10.1039/D1EN00547B
[11] XIE R J, JI J, GUO K H, et al. Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: Roles of sulfate and hydroxyl radicals [J]. Chemical Engineering Journal, 2019, 356: 632-640. doi: 10.1016/j.cej.2018.09.025
[12] AMANOLLAHI H, MOUSSAVI G, GIANNAKIS S. VUV/Fe(II)/H2O2 as a novel integrated process for advanced oxidation of methyl tert-butyl ether (MTBE) in water at neutral pH: Process intensification and mechanistic aspects [J]. Water Research, 2019, 166: 115061. doi: 10.1016/j.watres.2019.115061
[13] CAO T T, XU T F, ZHAO M N, et al. Application of vacuum-ultraviolet (VUV) for phenolic homologues removal in humic acid solution: Efficiency, pathway and DFT calculation [J]. Journal of Hazardous Materials, 2020, 384: 121464. doi: 10.1016/j.jhazmat.2019.121464
[14] HUANG H B, HUANG H L, ZHANG L, et al. Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals [J]. Chemical Engineering Journal, 2015, 259: 534-541. doi: 10.1016/j.cej.2014.08.057
[15] LIANG S M, SHU Y J, LI K, et al. Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation [J]. Journal of Hazardous Materials, 2020, 399: 122967. doi: 10.1016/j.jhazmat.2020.122967
[16] MOUSSAVI G, REZAEI M. Exploring the advanced oxidation/reduction processes in the VUV photoreactor for dechlorination and mineralization of trichloroacetic acid: Parametric experiments, degradation pathway and bioassessment [J]. Chemical Engineering Journal, 2017, 328: 331-342. doi: 10.1016/j.cej.2017.07.006
[17] WU M Y, HUANG H B, LEUNG D Y C. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation [J]. Journal of Environmental Management, 2022, 307: 114559. doi: 10.1016/j.jenvman.2022.114559
[18] GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) [J]. Chemical Engineering Journal, 2021, 406: 127083. doi: 10.1016/j.cej.2020.127083
[19] AMANOLLAHI H, MOUSSAVI G, GIANNAKIS S. Enhanced vacuum UV-based process (VUV/H2O2/PMS) for the effective removal of ammonia from water: Engineering configuration and mechanistic considerations [J]. Journal of Hazardous Materials, 2021, 402: 123789. doi: 10.1016/j.jhazmat.2020.123789
[20] LIN Z, QIN W L, SUN L, et al. Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of Bisphenol A in VUV/UV/peroxymonosulfate system [J]. Journal of Water Process Engineering, 2020, 38: 101636. doi: 10.1016/j.jwpe.2020.101636
[21] AMIRI Z, MOUSSAVI G, MOHAMMADI S, et al. Development of a VUV-UVC/peroxymonosulfate, continuous-flow Advanced Oxidation Process for surface water disinfection and Natural Organic Matter elimination: Application and mechanistic aspects [J]. Journal of Hazardous Materials, 2021, 408: 124634. doi: 10.1016/j.jhazmat.2020.124634
[22] LI J H, XIAO G F, GUO Z Y, et al. ZSM-5-supported V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of toluene in coal-fired flue gas [J]. Chemical Engineering Journal, 2021, 419: 129675. doi: 10.1016/j.cej.2021.129675
[23] XU W C, CHEN B X, JIANG X D, et al. Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5: Acidity/basicity, catalytic activity and reaction mechanism [J]. Journal of Hazardous Materials, 2020, 387: 122004. doi: 10.1016/j.jhazmat.2019.122004
[24] AZIZ A, KIM K S. Synergistic effect of UV pretreated Fe-ZSM-5 catalysts for heterogeneous catalytic complete oxidation of VOC: A technology development for sustainable use [J]. Journal of Hazardous Materials, 2017, 340: 351-359. doi: 10.1016/j.jhazmat.2017.07.019
[25] QI G, GATT J E, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3 [J]. Journal of Catalysis, 2004, 226(1): 120-128. doi: 10.1016/j.jcat.2004.05.023
[26] ROMERO-SÁEZ M, DIVAKAR D, ARANZABAL A, et al. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior [J]. Applied Catalysis B:Environmental, 2016, 180: 210-218. doi: 10.1016/j.apcatb.2015.06.027
[27] WAN Z J, WU W, LI G, et al. Effect of SiO2/Al2O3 ratio on the performance of nanocrystal ZSM-5 zeolite catalysts in methanol to gasoline conversion [J]. Applied Catalysis A:General, 2016, 523: 312-320. doi: 10.1016/j.apcata.2016.05.032
[28] LI J Q, HAN D Z, HE T, et al. Nanocrystal H[Fe, Al]ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline [J]. Fuel Processing Technology, 2019, 191: 104-110. doi: 10.1016/j.fuproc.2019.03.029
[29] VERMA S, NAKAMURA S, SILLANPÄÄ M. Application of UV-C LED activated PMS for the degradation of anatoxin-A [J]. Chemical Engineering Journal, 2016, 284: 122-129. doi: 10.1016/j.cej.2015.08.095
[30] KARIMIAN S, MOUSSAVI G, FANAEI F, et al. Shedding light on the catalytic synergies between Fe(II) and PMS in vacuum UV (VUV/Fe/PMS) photoreactors for accelerated elimination of pharmaceuticals: The case of metformin [J]. Chemical Engineering Journal, 2020, 400: 125896. doi: 10.1016/j.cej.2020.125896