[1] |
WU G, LI P, XU D, et al. Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3nanocubes [J]. Applied Surface Science, 2015, 333: 39-47. doi: 10.1016/j.apsusc.2015.02.008
|
[2] |
CAO Y, LEI X, CHEN Q, et al. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4 [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 364: 794-800. doi: 10.1016/j.jphotochem.2018.07.023
|
[3] |
胡瑞. 竹基生物炭的制备及其净化有机废水的性能研究[D]. 武汉: 武汉轻工大学, 2021.
HU R. Preparation of bamboo based biochar and its performance in organic wastewater[D]. Wuhan: Wuhan Polytechnic University, 2021(in Chinese).
|
[4] |
林爱秋, 程和发. 芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展 [J]. 环境化学, 2021, 40(5): 1305-1318. doi: 10.7524/j.issn.0254-6108.2021011401
LIN A Q, CHENG H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes [J]. Environmental Chemistry, 2021, 40(5): 1305-1318(in Chinese). doi: 10.7524/j.issn.0254-6108.2021011401
|
[5] |
CHENG S, PAN X, ZHANG C, et al. UV-assisted ultrafast construction of robust Fe3O4/polydopamine/Ag Fenton-like catalysts for highly efficient micropollutant decomposition [J]. Science of The Total Environment, 2022, 810: 151182. doi: 10.1016/j.scitotenv.2021.151182
|
[6] |
ZHAO L, LIN Z, MA X, et al. Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems [J]. Chemical Engineering Journal, 2018, 352: 343-351. doi: 10.1016/j.cej.2018.07.035
|
[7] |
OLADIPO A A, IFEBAJO A O, GAZI M. Magnetic LDH-based CoO–NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions [J]. Applied Catalysis B:Environmental, 2019, 243: 243-252. doi: 10.1016/j.apcatb.2018.10.050
|
[8] |
侯晓静. 异相Fenton体系铁循环调控及其污染物降解性能增强[D]. 武汉: 华中师范大学, 2018.
HOU X J. The mediation of Fe(III)/Fe(II) cycle in the heterogenous Fenton system and their enhanced contaminants degradation performance[D]. Wuhan: Central China Normal University, 2018 (in Chinese).
|
[9] |
HE P, ZHU J, CHEN Y, et al. Pyrite-activated persulfate for simultaneous 2, 4-DCP oxidation and Cr (VI) reduction [J]. Chemical Engineering Journal, 2021, 406: 126758. doi: 10.1016/j.cej.2020.126758
|
[10] |
FAN J, GU L, WU D, et al. Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species [J]. Chemical Engineering Journal, 2018, 333: 657-664. doi: 10.1016/j.cej.2017.09.175
|
[11] |
OH S Y, KANG S G, KIM D W, et al. Degradation of 2, 4-dinitrotoluene by persulfate activated with iron sulfides [J]. Chemical Engineering Journal, 2011, 172(2-3): 641-646. doi: 10.1016/j.cej.2011.06.023
|
[12] |
PAN X, GU Z, CHEN W, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review [J]. Science of the Total Environment, 2021, 754: 142104. doi: 10.1016/j.scitotenv.2020.142104
|
[13] |
LYU H, ZHANG Q, SHEN B. Application of biochar and its composites in catalysis [J]. Chemosphere, 2020, 240: 124842. doi: 10.1016/j.chemosphere.2019.124842
|
[14] |
DENG J, DONG H, ZHANG C, et al. Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine [J]. Separation and Purification Technology, 2018, 202: 130-137. doi: 10.1016/j.seppur.2018.03.048
|
[15] |
郭桂全, 胡巧红, 王承林, 等. g-C3N4/RGO的制备、光催化降解性能及其降解机理 [J]. 环境化学, 2021, 40(3): 808-817. doi: 10.7524/j.issn.0254-6108.2019092605
GUO G Q, HU Q H, WANG C L, et al. Preparation, photocatalytic degradation performance and degradation mechanism of g-C3N4/RGO [J]. Environmental Chemistry, 2021, 40(3): 808-817(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092605
|
[16] |
ZHAO L, GUO L, TANG Y, et al. Novel g-C3N4/C/Fe2O3 Composite for Efficient Photocatalytic Reduction of Aqueous Cr(VI) under Light Irradiation [J]. Industrial & Engineering Chemistry Research, 2021, 60(37): 13594-13603.
|
[17] |
刘梦, 王汉林, 刘海波, 等. 热分解黄铁矿制备单斜磁黄铁矿活化PDS降解土霉素 [J]. 硅酸盐学报, 2021, 49(07): 1403-1411. doi: 10.14062/j.issn.0454-5648.20210035
LIU M, WANG H L, LIU H B, et al. Monoclinic pyrrhotite derived from pyrite through thermal decomposition to activate PDS for the degradation of oxytetracycline [J]. Journal of the Chinese Ceramic Society, 2021, 49(07): 1403-1411(in Chinese). doi: 10.14062/j.issn.0454-5648.20210035
|
[18] |
HU J, ZHANG P, AN W, et al. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater [J]. Applied Catalysis B:Environmental, 2019, 245: 130-142. doi: 10.1016/j.apcatb.2018.12.029
|
[19] |
LI C, GUO Y, YANG F, et al. One-pot-solid preparation of novel three-dimensional FexS1-x/g-C3N4 heterostructures for efficient photocatalytic mixed-pollutants removal [J]. Ceramics International, 2020, 46(14): 22683-22691. doi: 10.1016/j.ceramint.2020.06.031
|
[20] |
MA J, ZHOU B, ZHANG H, et al. Fe/S modified sludge-based biochar for tetracycline removal from water [J]. Powder Technology, 2020, 364: 889-900. doi: 10.1016/j.powtec.2019.10.107
|
[21] |
SUN Y, LV D, ZHOU J, et al. Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study [J]. Chemosphere, 2017, 185: 452-461. doi: 10.1016/j.chemosphere.2017.07.047
|
[22] |
LIU L, QI Y, LU J, et al. A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation [J]. Applied Catalysis B:Environmental, 2016, 183: 133-141. doi: 10.1016/j.apcatb.2015.10.035
|
[23] |
MENG L, YIN W, WANG S, et al. Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity [J]. Chemosphere, 2020, 239: 124713. doi: 10.1016/j.chemosphere.2019.124713
|
[24] |
LI Y, ZHANG H, LIU P, et al. Cross‐linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity [J]. Small, 2013, 9(19): 3336-3344.
|
[25] |
许亚楠. 改性铁基复合物的制备及其光助催化降解橙II的性能[D]. 兰州: 西北师范大学, 2020.
XU Y N. Preparation of modified iron-based composites and their photo-assisted catalytic degradation properties of Orange II. Lanzhou: Northwest Normal University, 2020 (in Chinese).
|
[26] |
JIANG J, GAO J, LI T, et al. Visible-light-driven photo-Fenton reaction with α-Fe2O3/BiOI at near neutral pH: Boosted photogenerated charge separation, optimum operating parameters and mechanism insight [J]. Journal of colloid and interface science, 2019, 554: 531-543. doi: 10.1016/j.jcis.2019.07.038
|
[27] |
SUN B, LI H, LI X, et al. Degradation of organic dyes over Fenton-like Cu2O-Cu/C catalysts [J]. Industrial & Engineering Chemistry Research, 2018, 57(42): 14011-14021.
|
[28] |
SONG Y, QI J, TIAN J, et al. Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation [J]. Chemical Engineering Journal, 2018, 341: 547-555. doi: 10.1016/j.cej.2018.02.063
|
[29] |
宋思扬, 吴丹, 赵焕新, 等. Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能 [J]. 环境工程学报, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147
SONG S Y, WU D, ZHAO H X, et al. Fabrication of Co-FeOOH/g-C3N4 composite and its catalytic performance on heterogeneous photo-Fenton [J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3262-3269(in Chinese). doi: 10.12030/j.cjee.201912147
|
[30] |
WANG L, SHI X, JIA Y, et al. Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting [J]. Chinese Chemical Letters, 2021, 32(6): 1869-1878. doi: 10.1016/j.cclet.2020.11.065
|
[31] |
CUI K P, YANG T T, CHEN Y H, et al. Magnetic recyclable heterogeneous catalyst Fe3O4/g-C3N4 for tetracycline hydrochloride degradation via photo-Fenton process under visible light[J]. Environmental Technology, 2021: 1-14,DOI: 10.1080/09593330.2021.1921052.
|